→ Реакция перерождения мышц. Классическая электродиагностика. Синдром поражения периферического двигательного нейрона

Реакция перерождения мышц. Классическая электродиагностика. Синдром поражения периферического двигательного нейрона

ЭЛЕКТРОДИАГНОСТИКА , применение электрической энергии в целях распознавания заболеваний. Наибольшее значение имеет Э. при б-нях нервной системы, в особенности двигательного аппарата. Для Э. обычно пользуются гальваническим и фарадическим током. Токи высокого напряжения и франклиновские искры не имеют диагностического значения. Пфлюге-ровский закон сокращения, построенный на экспериментальном биполярном раздражении обнаженного нерва, встречает при перенесении его на человека нек-рые затруднения. При применяемом в клинике однополюсном раздражении нерва ток не распространяется исключительно по длшшику, а идет отчасти вкось и поперек перва. Место входа тока носит название полярной зоны, место выхода-периполярной (рис. 1). Ток частично выходит из нерва невдалеке от места приложения действующего полюса. Этот противоположный ток носит название виртуального. При раздражении какой-либо точки тела катодом ток стремится к аноду по нескольким линиям, разливаясь через все тело,-петлями тока (рис. 2). Все же орган,вблизи к-рого помещается какой-либо полюс, находится под его преимущественным влиянием. На этом основан применяемый в клинике для электродиагностических целей однополюсный метод исследования. Нервы и мышцы раздражаются электротоком через активный электрод в определенных точках, соответствующих наиболее поверхностному расположению нервов и местам вхождения,-....... перипол* (катэлектротонич.) пояс.--полярный (анялектротоыич.) пояс- действительна -f ^ анод

«артуальаыйкатод

Мшпцы я проч. Рисунок 1. (По Watteville"io.) их|в мышцы (рис. 3 и 4). Пассивный инди-ферентный большой электрод помещается на части тела, лишенной крупных нервов или мышц, напр. на грудной кости или крестце. При слабых токах сокращение наступает лишь при замыкании катода, поскольку раздражающее действие катода на нерв превосходит действие анода. При средних токах сокращение появляется и при отмыкании анода и почти при той же силе тока при замыкании его; в последнем случае при замыкании тока, анод к-рого расположен на активном электроде, вступают в действие виртуальные катоды, оказывающие большое действие на нервно-мышечный аппарат. При сильных токах раздражение катодом вызы-зает тетаническое сокращение; влияния виртуального анода, несмотря на его относительную слабость, все же достаточно для того, чтобы появилось сокращение при отмыкании катода. ПриЭ. учитывается сила, тока, необходимая для получения сокращения, полюс и моменты замыкания и размыкания и характер мышечного ответа. Для суждения о норме и об отклонениях от нее пользуются таблицами Штипцин-га (Stinzing), в к-рых приведены средние, величины электровозбудимости для каждого нерва и мышцы, крайние высшие и низшие цифры, лежащие еще в пределах нормы, и разница в электровозбудимости между нервами и мышцами обеих сторон. Так напр. нижняя граница гальвановозбудимости лицевого нерва-0,8 тА, верхняя--2,8, средняя величина-1,75; нормальные цифры гальвановозбудимости общего разгибателя пальцев кисти колеблются от 0,6 до 3,0 тА. Изменения в силе тока, способного вызывать сокращения, составляют количественную сторону электродиагностического исследования и имеют особенное значение при исследовании

Рисунок 2. Распространение тока по человеческому телу. (По Rleger"y.)

нервов. Изменение самого характера мышечного сокращения выявляется гл. обр. при раздражении мышц и образует качественную сторону. Снижение электровозбудимости нерва выражается тремя феноменами: 1) для вызывания минимального сокращения требуются токи значительно большей силы, чем в норме, 2) самые сильные токи вызывают лишь слабые сокращения, 3) некоторые элементы Бреиноров-ской формулы (см. Бреннер-Эрба формула) не имеют места и йри самых сильных токах (например КЗС).

При неврогенном поражении двигательного аппарата данные Э. входят в состав отличительных признаков вялого и спастиче- , ского паралича. Раньше всего проверяется для отдельного нерва и мышцы Пфлюге-ровский закон сокращения. Для этого на одну и ту же нервную или мышечную точку действуют раньше фарадическим, а затем попеременно катодом и анодом гальванического тока при одной и той же силе тока.Т. о. устанавливается получаемое от раздражения минимальное сокращение, и электродиагностическим мерилом служит самый слабый ток, необходимый для подобного сокращения. В пат. случаях при раздражении одним и тем же полюсом электротока обнаруживаются преимущественно количественные изменения электровозбу-: димости; качественные изменения выявляются при перемене полюсов. Совокупность качественных и количественных изменений носит название реакции перерожде-н и я. Она наступает при нарушении связи между нервно-мышечным аппаратом и его трофическим центром, т. е. при заболеваниях периферического неврона. Наоборот, как правило реакция перерождения не наблюдается при первичном заболевании мускулатуры и поражении центрального неврона. При реакции перерождения снижается возбудимость перва на оба тока и фарадическая возбудимость мышц, гальваническая же возбудимость мышцы в первом периоде реакции перерождения может быть даже повышенной и лишь затем падает. Наиболее важным признаком реакции перерождения является вялость мышечного сокращения. При тяжелой форме реакции перерождения нерв вовсе теряет электровозбудимость; также исчезает фарадическая возбудимость мышцы и остается лишь гальваническая возбудимость ее па сильные токи. Формула Бреннера при реакции перерождения средней и тяжелой степени часто Рис 3. Схема двигательных точек" на голове и шее: 2-п. 1а-cialis (верхняя ветвь); 2 -т. temporalis; S -m. orblcularis oculi; 4- п. facialis (средняя ветвь); 5-m. masseter; 6-п. facialis (общий ствол); 7- п. facialis (нижняя ветвь); S -п. accessories; 9 -m. sterno-cleido-mastoi-deus; 10 -п. thoracalis longus; 11 и 12- plexus brachialis; IS и 14 -мышцы подъязычной кости; IS- platysma myoid.es ; 26-и. hypoglossus; ? 7-m. levator men-ti; 18- m. depressor labii inferio-ris; 19- m. depressor anguli oris; 20 и 21 -m. orbicularis oris; 22-m. zygomaticus; 23- mm, nasales; 24- m. corrugator super-cilii; 25-m. frontalis. меняется; АЗС и КРС но своей силе приближаются к КЗС и АРС. Скрытый период увеличивается при вялом сокращении до четырех раз. В норме сокращение мышцы тем больше при одинаковой силе раздражения, чем ближе к месту вхождения нерва (двигательные точки Ранвье) прилагается раздражитель; при

23 .22

Рисунок 4. Схема двигательных точек на туловище и конечлостях: 1- т. pectoralis; 2-m. deltoideus; 3-т. biceps; 4-га. obliquus abdominis externus; ,5-m. supinator longus; в-m. extensor carpi ulnaris.-7-m. Ilexor carpi radialis; 8- m. extensor digitorum communis; 9 -m. extensor indicis; 10-m. extensor pollicis longus; 11 -n. femoralis; 12-m. tensor fasciae latac; 13-m. sartorius; 14-a. obturatorius; 15- m. adductor longus; 16- m. vastus lat.; 11- m. pero-naeus longus; 18- m. gastrocr.emius lat.; IS- m. tibialis ant. et extensor dig. comm. longus; 20- m. «xter.sor hallucis longus; gj-m. extensor digitorum comm. brevis; 21-m. interosseus dorsalis I; 22-m. sartorius; 23-n. obturatorius; 24- n. tibialis; 25-m. soleus; 26-m. flexor digitorum communis longus; 21 -mm. gastrocnemii; 28 -m. adductor longus; 29-m. vastus med.; 30 -m. rectus femoris; 31- m. rectus abdominis; 32 -n. ulnaris; 33 -n. medianus; 34-m. flexor digitorum profundus; 35- m. flexor digitorum sublimis; 36- n. ulnaris; 31- m. flexor digiti minimi; 38-m. abductor pollicis; 39- m. adductor pollicis brevis; 40-m. opponens pollicis; 41 -n. medianus; 42 -hi. flexor carpi radialis. реакции перерождения иногда происходит смещение двигательных точек (феномен Wertheim-Salomonson"a). Помимо диагностического значения реакция перерождения играет большую роль и в прогнозе, формулированную Эрбом в следующих положениях. При одинаковости болезненной формы и вызывающей ее причины поражение тем значительнее, длительность заболевания тем больше, благоприятный исход | тем менее вероятен, чем белее выражена реак- i ция перерождения. Частичная реакция перерождения дает лучшее предсказание, чем полная. Реакция перерождения в позднем стадии б-ни прогностически более неблагоприятна, чем в раннем. Повышение электровозбудимости как самостоятельный феномен наблюдается при тетании, где иногда сокращение получается при АР и КР при токе ниже 5 тА (феномен Манна-Тимиха). Невротоническая реакция (реакция Ремака и Марина) состоит в появлении тетануса при раздражении нерва слабыми токами не только при КЗ, но и при A3. Невротоническая реакция наблюдалась при мышечной дистрофии, эпидемическом энцефалите (Кроль).-Миа-стеническая реакция (Jolly) заключается в постепенном угасании мышечной возбудимости при следующих друг за другом прямом и непрямом раздражениях. После кратковременной паузы восстанавливается прежняя возбудимость. При повторном раздрал-сении снова повторяется последовательное угасание. Миа-стеническая реакция встречается при миастении, облитерирующем эндартериите, эпидемическом энцефалите. ■- Трупная реакция состоит в полном исчезновении возбудимости на оба тока, наступающим во время припадка периодического паралича конечностей. Миатониче-ская реакция состоит в снижении фарадической возбудимости мышц при сохранности гальвано-возбудимости. Встречается иногда при врожденной амиотонии (миатонии).-При м и о т о -нической реакции возбудимость нервов для средних токов нормальна. Электровозбудимость мышц резко повышена па оба тока. При фарадизации мышцы даже слабым током наступает длительное сокращение ее. При гальваническом токе сокращение носит весьма вялый характер, держится после размыкания тока и медленно спадает. При длительном пропускании тока через мышцу в ней наступают ритмические сокращения, распространяющиеся от катода. к аноду. Иногда они появляются и при раздражении нервов сильным током. Миотоническая реакция бывает при миотонии, эпидемическом энцефалите и сирингомислии.-Реакция с п р о б е л о м (Benedict) заключается в том, что при раздражении гальваническим током наступают однократные сокращения, к-рые не появляются при следующих раздражителях; для получения сокращения становятся необходимыми все более и более сильные токи. Реакция с пробелом была отмечена при прогрессивной мышечной дистрофии. При л о н г и т у д и н а л ь н о и реакции мышца отвечает сокращением на гальванический ток лишь в том случае, когда ток пропускается вдоль нее. Активный электрод ставится на сухожилие исследуемой мышцы и даже вдали от нее. Иногда лонгитудинальный прием применяется в случаях потери фарадической возбудимости мышцы при реакции перерождения. Пропуская гальванический ток вдоль всей конечности, иногда удается одновременным сильным фарадическим током вызвать сокращение мышцы. В основе лонгитудиналыюй реакции лежит свойство перерождающейся мышцы терять возбудимость раньше всего в местах вхождения в нее нерва и позже всего в своих концевых отделах. Двигательный эффект при лонгитудиналыюй реакции бывает иногда обширнее, чем при реакции перерождения.Иногда | лонгитудинальная реакция на долгое время пе- I реживает реакцию перерождения. Э. в приложении кизменениям чувствительности имеет гораздо меньшее значение, чем при изменении двигательного аппарата. При исследовании последнего Э. оперирует сокращением мускулатуры, поддающимся наблюдению и точному измерению, при Э. чувствительности результаты контролируются лишь субъективными ощущениями исследуемого. По принципу специфической энергии электроток, хотя и адекватный раздражитель, вызывает со стороны как самих органов чувств, таг. и их нервов специфические формы ощущений. Поэтому при электрическом исследовании таких нервов, как зрительный, слуховой, вкусовой, обонятельный, нет возможности провести различие между раздражением самого органа чувства и его нервов. Несколько большее значение имеет Э. кожных нервов. Фарадокожная чувствительность не всегда идет параллельно с другими видами чувствительности. Пути ее и окончания точно не установлены. Элсктро-мьпнечная чувствительность Дюшена в форме болезненного чувства сокращения мышцы не вполне идентична с чувством обычного мышечного сокращения. Подобно цифрам Штинцингов-■ской таблицы для двигательных нервов Гофман установил минимальные цифры тока, необходимые для получения ощущения при раздражении чувствительных нервов. Чувствительная реакция перерождения, аналогичная двигательной, иногда наблюдается при спинной сухотке и опоясывающем лишае. Фарадокожная чувствительность при ной отсутствует или понижена, гальваническая может быть повышенной, анод несколько болезненнее катода. Раздражение фарадическим током обнаженного при операции или вследствие травмы нерва вызывает чувство зуда. Гальванический ток, пропускаемый через обнаженный нерв, обусловливает ощущение жара; при одновременном пропускании гальванического и фарадического тока появляется чувство давления. Указанное ощущение иногда локализируется строго в области раздражаемого нерва, иногда выходит за его пределы.-С диагностической целью используется степень сопротивления кожи электротоку. Понимание сопротивления характерно для б-ни Базедова, реже оно бывает при истерии и травматическом неврозе. Повышение сопротивления наблюдается при склеродермии, микседеме, слоновости. Сопротивление кожи току определяется влажностью ее, зависящей от сосудистых факторов и степени потоотделения. Электродиагностика на обнаженном во время операции мозгу применяется для определения отдельных двигательных и чувствительных центров. Лит.: См. лит. к ст. Электровозбудишсть и Элеп-тролечение. М. Нойдинг.

Электродиагностика - это метод исследования функционального состояния нервов и мышц при помощи раздражения их электрическим током. В оценке состояния нервно-мышечного аппарата основную роль играет характер мышечного сокращения. При раздражении здоровой мышцы отмечаются живые, быстрые сокращения, а дегенерирующая мышца отвечает замедленным, вялым сокращением. Для определения количественных изменений сопоставляют пороги электровозбудимости на здоровой и пораженной сторонах. Для этого используют как переменный, так и постоянный ток; электроды накладывают на двигательную точку - место вхождения нерва в мышцу.

Метод исследования функционального состояния чувствительных нервов зуба при помощи раздражения электрическим током - используется в для определения степени патологических изменений пульпы или периодонта.

Исследование электровозбудимости позволяет не только ставить диагноз, но и следить за динамикой патологического процесса, контролировать эффективность применяемой терапии, определять прогноз.

Электродиагностика - это метод исследования реакции нервов и мышц на раздражение электрическим током. При патологии возбудимость ткани может изменяться в широких пределах: от повышения до полного отсутствия. Исследование возбудимости позволяет определить состояние ткани и тем самым уточнить диагноз. Именно это и обусловливает широкое применение электродиагностики в клинике.

О степени возбудимости судят по минимальной (пороговой) силе раздражителя, способной вызвать возбуждение. Минимальная интенсивность раздражения, за пределами которой беспредельное увеличение продолжительности его действия оказывается неэффективным, называется реобазой. Минимальное время, при котором интенсивность, равная реобазе, вызывает возбуждение, называется полезным временем.

Рис. 1. Графическое изображение тока, получаемого от индукционной катушки.

Для исследования возбудимости нервов и мышц используется несколько форм тока. Классическая электродиагностика, т. е. метод, который был разработан его основоположниками, сводилась к исследованию возбудимости при помощи так называемого фарадического и постоянного тока. Для получения фарадического тока применяли индукционные катушки, при помощи которых в исследуемый нервно-мышечный аппарат посылались 20-30 импульсов в 1 сек. (графическое изображение этого тока представлено на рис. 1). Раздражения следовали одно за другим с такой частотой, что мышца приходила в состояние тетануса. При поражениях периферического двигательного неврона реакция на раздражение током этой формы может не наступить: получаемые при этом импульсы могут оказаться недостаточными для возбуждения патологически измененной ткани. Отсутствие реакции на этот ток не означает полного отсутствия возбудимости, оно может свидетельствовать только о ее понижении. В последнее время вместо фарадического тока пользуются так называемым тетанизирующим током, мало отличающимся по форме и физиологическому действию от фарадического. Более полную картину состояния нервно-мышечного аппарата можно получить на основании исследования возбудимости постоянным током, при помощи которого можно обнаружить не только количественные, но и качественные изменения электровозбудимости. О последних судят по полярной формуле и характеру сокращения мышцы. Многочисленными исследованиями было установлено, что сила тока, необходимая для возникновения возбуждения нерва или мышцы, возрастает следующим образом: КЗС>АЗС>АРС>КРС (катодозамыкательное сокращение наступает при меньшем токе, чем анодозамыкательное; анодозамыкательное - раньше анодоразмыкательного; анодоразмыкательное - при меньшем токе, чем катодоразмыкательное). При поражениях нервно-мышечного аппарата может наступить извращение полярной формулы (АЗС>КЗС) и др., причины которого полностью не изучены. Несомненно лишь одно: в основе его наряду с серьезными изменениями в нервно-мышечном аппарате лежат нередко и чисто физические факторы - электропроводность тканей, непосредственно прилегающих к исследуемому участку нерва или мышцы, в результате чего анод вызывает возбуждение при меньшем токе, нежели катод (Л. Р. Рубин). Вот почему диагностическое значение извращения полярной формулы невелико. Исключительно большую роль в оценке состояния нервно-мышечного аппарата играет характер мышечного сокращения. В норме на раздражение мышца отвечает живым, молниеносным сокращением; при поражении двигательного нерва в соответствующих мышцах возникают дегенеративные процессы, проявляющиеся вялыми, червеобразными сокращениями.

Исследование электровозбудимости при классическом методе электродиагностики начинают с применения тетанизирующего тока. Определяя порог возбудимости сначала на здоровой, а потом на пораженной стороне, устанавливают наличие или отсутствие количественных изменений. После этого переходят к воздействию постоянным током, что позволяет определить и количественные, и качественные изменения электровозбудимости.

Для частичной реакции перерождения характерна следующая картина изменений электровозбудимости:

При полной реакции перерождения характерны следующие данные:

Отсутствие реакции мышцы на очень сильные, с трудом переносимые токи свидетельствует о гибели нерва и мышцы.

Изменения электровозбудимости не идут параллельно другим клиническим проявлениям поражения периферического двигательного неврона. В первые дни иногда наблюдается даже повышение возбудимости. Через 4-6 дней начинается постепенное понижение электровозбудимости нерва (иногда и мышцы), определяемое как тетанизирующим, так и постоянным током. Через 15-20 дней реакция нерва на оба вида тока исчезает, мышцы же реагируют только на раздражение постоянным током, причем порог их может быть даже понижен, хотя сокращения носят уже вялый характер. К этому же времени может наблюдаться извращение полярной формулы и смещение двигательной точки мышцы в направлении к ее дистальному концу. Такое состояние длится довольно долго (7-8 месяцев и больше). Исходом его может быть в случае регенерации нерва восстановление возбудимости (причем восстановление функции опережает появление реакции на раздражение током) или ее полное угасание (гибель мышцы).

Не при всех состояниях нервно-мышечного аппарата классическая электродиагностика позволяет точно исследовать возбудимость. При далеко зашедших поражениях периферического двигательного неврона (полная реакция перерождения) фарадический ток (частота импульсов - 20-30 в 1 сек.) не вызывает тетануса. Однако и в этих случаях можно вызвать тетаническое сокращение мышцы: надо только найти соответствующую частоту импульсов. Отклонение в ту или иную сторону от найденного оптимума частоты раздражений приводит (даже при значительном увеличении силы тока) к ослаблению тетануса. Чем лучше состояние нервно-мышечного аппарата, тем больше оптимальная частота. Таким образом, по частоте импульсов, способной вызвать тетанус, можно судить о состоянии мышцы, а тем самым и о динамике патологического процесса.

Исследование возбудимости при помощи постоянного тока сводится к посылке одиночных импульсов прямоугольной формы, для которых характерно очень крутое нарастание раздражения, что позволяет пороговую силу тока довести до минимума. Однако при тяжелых поражениях периферического двигательного неврона использование таких импульсов нецелесообразно, так как пороговая сила тока в этих случаях достигается раньше при более пологом, постепенном нарастании импульса. В ряде наблюдений установлено, что для денервированных мышц импульсы с постепенным нарастанием силы тока «физиологичнее» импульсов с быстрым увеличением силы тока. Поэтому для исследования таких мышц целесообразно пользоваться экспоненциально возрастающими импульсами тока. Таким образом, исследование импульсами экспоненциальной формы и определение оптимальной частоты, способной вызвать тетанус, служат существенным дополнением к классической электродиагностики.


Рис. 2. Активный электрод с прерывателем.


Рис. 3. Двигательные точки нервов и мышц головы и шеи: 1 - m. corrugator supercillii; 2 - m. orbicularis oculi; 3 - m. nasalis (pars transversa); 4 - m. orbicularis oris; 5 - m. depressor labii inf.; 6 - m. mentalis; 7 - точка Эрба (plexus brachialis); 8 - mm. scaleni; 9 - platysma; 10 - m. sternocleidoma stоideus; 11 - n. facialis (ramus inferior); 12 - n. facialis (ствол); 13 - m. nasalis (pars alaris); 14 - n. facialis (ramus medius); 15 - n. facialis (ramus superior); 16 - m. temporalis; 17 - m. frontalis.

Методика исследования электровозбудимости двигательных нервов и мышц сводится к следующему. Свинцовую пластинку толщиной 0,4 - 0,6 мм и площадью 300- 400 см 2 (пассивный электрод) соединяют шнуром с одним из полюсов источника тока. Под пластинку помещают смоченную теплой водой гидрофильную прокладку из 8-10 слоев белой фланели или байки (по размерам несколько больше пластинки во избежание ожогов при соприкосновении металла с кожей). Пассивный электрод с прокладкой укрепляют бинтом на область грудины или поясницы. Другой электрод (активный) представляет собой медную круглую пластинку диаметром 1 -1,5 см, припаянную к металлическому стержню, укрепленному в изолирующей ручке с прерывателем (рис. 2), что позволяет замыкать и размыкать цепь больного. Активный электрод соединяют с другим полюсом источника тока и помещают над двигательной точкой исследуемого нерва (мышцы). Существующие схемы двигательных точек всех доступных исследованию нервов и мышц (рис. 3-6) дают лишь общее представление об их топографии; только опыт позволяет быстро определить искомую двигательную точку. Отыскав ее, определяют их порог, начиная с очень слабых раздражений и постепенно усиливая. Всякое раздражение влияет на функциональное состояние ткани. При этом, чем интенсивность раздражения больше, тем резче сказывается его действие. Во избежание ошибки, обусловленной действием предшествующего раздражения, последующее раздражение следует нанести через 1-2 сек., а при заведомо патологических состояниях - через 5-10 сек. Нужно учесть, что исследованию возбудимости может мешать чрезмерное нагревание или охлаждение соответствующих участков тела, а также переутомление мышц. Больному следует придать положение, при котором исследуемые мышцы и их антагонисты находятся в максимально расслабленном состоянии. Исследование производят при хорошем освещении, чтобы уловить минимальные сокращения мышц. Если не удается вызвать реакцию с двигательной точки, активный электрод постепенно перемещают к концу мышцы, чтобы выяснить, не сместилась ли двигательная точка. Если и при этом не удается вызвать сокращение, переходят к исследованию «биактивным» методом, при котором на концы мышцы накладывают два маленьких электрода - так называемый биактивный электрод (рис. 7).


Рис. 4. Двигательные точки нервов и мышц руки:
а - передняя поверхность: 1 - m. coracobrachialis; 2 - n. medianus; 3 - m. biceps brachii; 4 - n. medianus; 5 - m. pronator teres; 6 - m. flexor carpi ulnaris; 7 - m. palmaris longus; 8 - m. flexor digitorum superficialis; 9 - n. ulnaris; 10 - n. medianus; 11 - m. abductor digiti minimi; 12 - m. flexor digiti minimi brevis; 13 - mm. lumbricales; 14 - m. adductor pollicis; 15 - m. flexor pollicis brevis; 16 - m. abductor pollicis brevis; 17 - m. flexor pollicis longus; 18 - m. flexor digitorum profundus; 19 - m. palmaris longus; 20 - m. flexor carpi radialis; 21 - m. brachialis; 22 - m. triceps brachii; 23 - m. deltoideus.
б - задняя поверхность: 1 - m. deltoideus; 2 - m. triceps (caput lat.); 3 - n. radialis; 4 - m. supinator; 5 - m. extensor carpi radialis longus; в - m. extensor carpi radialis brevis; 7 - m. extensor digitorum; 8 - m. extensor digiti minimi; 9 - m. extensor pollicis brevis; 10 - m. extensor pollicis longus; 11 - mm. interossei dorsales; 12 - m. extensor indicis; 13 - m. flexor carpi ulnaris; 14 - m. extensor carpi ulnaris; 15 - n. ulnaris; 16 - m. triceps (caput mediale); 17 - m. triceps (caput longum).


Рис. 5. Двигательные точки мышц туловища и нервов ноги:
а - передняя поверхность: 1 - m. sternocleidomastoideus; 2 - m. omohyoideus; 3 - m. deltoideus; 4 - m. pectoralis major (pars sternocostalis); 5 - m. obliquus abdominis ext.; 6 - n. femoralis; 7 - m. rectus abdominis; 8 - m. pectoralis major (pars clavicularis); 9 - m. trapezius; 10 - точка Эрба (plexus brachialis); 11 - platysma.
б - задняя поверхность: 1 - m. supraspinatus; 2 - m. deltoideus; 3 - m. infraspinatus; 4 - m. rhomboideus major; 5 - m. latissimus dorsi; 6 - m. obliquus abdominis ext.; 7 - m. gluteus minimus; 8 - m. gluteus maximus; 9 - n. ischiadicus; 10 - m. latissimus dorsi; 11 - m. trapezius; 12 - m. rhomboideus minor; 13 - m. trapezius.


Рис. 6. Двигательные точки нервов и мышц ноги:
а - передняя поверхность: 1 - n. femoralis; 2 - m. sartorius; 3 - m. pectineus; 4 - m. adductor longus; 5 - m. adductor magnus; e - m. quadriceps femoris; 7 - m. vastus med.; 8 - m. tibialis ant.: 9 - m. extensor hallucis longus; 10 - mm. interossei dorsales; 11 - m. extensor digitorum brevis; 12 - m. peroneus brevis; 13 - m. extensor digitorum longus; 14 - m. peroneus longus; 15 - m. soleus; 16 - n. peroneus communis; 17 - m. vastus lat.; 18 - m. tensor fasciae latae.
б - задняя поверхность: 1 - m. gluteus min; 2 - m. tensor fasciae latae; 3 - m. biceps femoris (caput longum); 4 - m. biceps femoris (caput breve); 5 - n. tibialis; s - m. gastrocnemius (caput lat.); 7 - m. soleus; 8 - m. peroneus longus; 9 - m. peroneus brevis; 10 - m. flexor hallucis longus; 11 - m. extensor digitorum brevis; 12 - m. abductor digiti minimi; 13 - m. tibialis; 14 - m. flexor digitorum longus; 15 - m. gastrocnemius (caput mediale); 16 - m. semitendinosus; 17 - m. semimembranosus; 18 - n. ischiadicus; 19- m. gluteus maximus.


Рис. 7. «Биактивный» электрод.

Исследовать мимические и жевательные мышцы удобнее в сидячем положении больного. Жевательную и височную мышцы исследуют при слегка приоткрытом рте. Для исследования мышц плечевого пояса больного усаживают с опущенными руками. Для исследования мышц плеча полусогнутую в локтевом суставе руку несколько отводят от туловища (рис. 8). При исследовании мышц верхней половины туловища больной может сидеть или лежать; мышцы же нижней половины туловища, а также нервы и мышцы нижней конечности удобнее исследовать в лежачем положении больного (рис. 9). Для исследования малоберцового нерва больного укладывают на спину, а для исследования большеберцового нерва - на живот.

При односторонних поражениях нервно-мышечного аппарата определяют сначала пороговую величину тока, необходимую для возбуждения соответствующего нерва или мышцы на здоровой стороне, и сопоставляют с пороговой силой на больной стороне. Судить о наличии количественных изменений возбудимости можно лишь в случае выраженной разницы в пороговых значениях на больной и здоровой стороне. При двусторонних поражениях о количественных изменениях можно говорить лишь в случаях, когда либо очень слабые токи вызывают сильные сокращения, либо, наоборот, сильные токи вызывают слабые сокращения.


Рис, 8. Наиболее удобные положения руки (1-2) для исследования электровозбудимости.


Рис. 9. Наиболее удобные положения ноги (1-3) для исследования электровозбудимости.

Количественные изменения возбудимости в виде повышения могут происходить в начальном периоде заболевания периферического двигательного неврона. Обычно же повышение возбудимости наблюдается при тетании. Понижение возбудимости иногда обнаруживается и при отсутствии поражения периферического двигательного неврона, а именно при резко выраженных вторичных мышечных атрофиях. Характерным для поражения центрального двигательного неврона является отсутствие каких-либо качественных изменений возбудимости. Количественные изменения считаются неспецифичными. В ранних стадиях заболевания иногда может обнаруживаться повышение, а в поздних - некоторое понижение возбудимости.

Особого внимания заслуживают изменения возбудимости при миастении и миотонии. При миастении первые импульсы тока вначале вызывают нормальную реакцию, последующие сокращения становятся более слабыми и, наконец, совсем исчезают (миастеническая реакция). После отдыха возбудимость мышц восстанавливается.

Миотоническая реакция заключается в том, что сокращение мышцы, вызванное электрическим раздражением (в особенности тетанизирующим током), держится еще некоторое время после выключения тока (5-20 сек.). Электровозбудимость нервов нормальна. Эта своеобразная реакция наблюдается при болезни.

Периферический паралич является, как только что было ска­зано, результатом поражения периферических двигательных нейронов, т. е. клеток передних рогов спинного мозга (или дви­гательных ядер черепных нервов), передних. корешков и дви­гательных волокон спинномозговых и черепных периферических нервов. Этот тип параличей характеризуется утратой рефлек­сов, гипотонией и дегенеративной атрофией мышц, сопровож­дающейся так называемой реакцией перерождения.

Утрата рефлексов (или ослабление их при неполном пора­жении) становится понятной, если мы вспомним, что перифери­ческий двигательный нейрон является в то же время и центро­бежной, эфферентной частью рефлекторной дуги. При перерыве любого отдела последней рефлекторный акт невозможен или (при неполном перерыве) ослаблен.

Атония или гипотония мышц объясняется также перерывом рефлекторной дуги, в результате чего мышца утрачивает свой­ственный ей постоянный, так называемый контрактильный то­нус, поддерживаемый в норме той же рефлекторной дугой. Кроме того, атония может быть усилена возникающей атрофией мышечной массы. Атонические мышцы на ощупь дряблы, вялы, пассивные движения избыточны, суставы «разболтаны». Такое состояние мускулатуры дает основание называть перифериче­ский паралич также вялым, или атоническим.

Атрофия мышц возникает в результате разобщения с клет­кой переднего рога, откуда по двигательному нервному волокну к мышце притекают нервно-трофические импульсы, стимули­рующие нормальный обмен мышечной ткани. Наличие мышеч­ных атрофий обусловливает еще одно определение перифери­ческого паралича - как атрофического.

Атрофия мышц наступает вслед за перерождением и ги­белью нервных двигательных волокон, происходит «денервация» мышцы. В итоге в нервах исчезают книзу от места пере­рыва двигательные волокна; в мышце развивается дегенератив­ный процесс, характеризующийся изменениями мышечных во­локон, гибелью их, развитием жировой и соединительной ткани.

Возникают характерные, типичные для периферического пара­лича изменения электрических реакций пораженных нервов и мышц, называемые реакцией перерождения или дегенера­ции (РД).

В норме при раздражении нерва гальваническим (при замы­кании и размыкании) и фарадическим токами происходит со­кращение иннервируемых им мышц; при раздражении теми же токами непосредственно самой мышцы также происходит ее сокращение, причем на гальванический ток оно возникает чрез­вычайно быстро («молниеносно») и отличается тем, что катодозамыкательное сокращение больше, чем анодозамыкательное (КЗС > АЗС).

При реакции перерождения (дегенерации) нерв не проводит тока к мышце, ибо двигательные центробежные волокна его пе­рерождены и погибли; сама мышца денервирована и утрачивает способность сокращения на раздражение фарадическим током, сохраняя возбудимость только на гальванический. Но и это со­кращение становится медленным («червеобразным»), причем большим становится уже анодозамыкательное сокращение (АЗС > КЗС). Такое состояние называется полной реакцией перерождения и наступает на 12 - 15-й день после перерыва нерва или гибели клетки переднего рога.

При неполном поражении периферического двигательного нейрона может наступать частичная реакция перерождения, когда возбудимость нерва на оба тока не утрачена, а лишь ос­лаблена, равно как и фарадическая возбудимость мышцы; со­кращение же мышцы при раздражении гальваническим током также возникает медленно, с преобладанием анодозамыкательного эффекта над катодозамыкательным (АЗС > КЗС).

Полная реакция перерождения еще не является плохим про­гностическим признаком: при условии восстановления (регене­рации) нервного волокна она может через фазу частичной реак­ции замениться нормальной электровозбудимостью. Но если мышца при периферическом параличе остается полностью денервированной свыше 12 - 14 месяцев (иногда и дольше), то в результате прогрессирующей дегенерации мышечных волокон они погибают полностью, заменяются жировой и соединитель­ной тканью, и наступает цирроз мышцы с утратой уже и реак­ции ее на гальванический ток, т. е. развивается полная утрата электровозбудимости. Последняя указывает на необратимость происшедших в мышце изменений.

Изменения электровозбудимости при периферическом пара­личе представлены в табл. 3 (по М.И. Аствацатурову).

Реакция перерождения наблюдается при атрофиях, которые развиваются в результате поражения периферического двигательного нейрона. Другие атрофические процессы в мыш­цах (артрогенные, от бездеятельности, при заболеваниях самого мышечного аппарата) реакцией дегенерации не сопровождаются. Исследование реакции дегенерации имеет в клинике опреде­ленное значение и позволяет проводить дифференциальную диагностику мышечных атрофий различной природы. Кроме того, исследование электровозбудимости дает возможность рано установить диагноз нарушений проводимости нерва, сократи­тельной способности мышц и позволяет судить о динамике про­цесса, устанавливая, например, переход от полной реакции пе­рерождения к частичной в процессе восстановления перифери­ческого паралича.

Таблица 3

Для того чтобы судить о нормальной электровозбудимости нервов и мышц или установить те или иные отклонения от нормы, необходимо знать средние величины электровозбудимо­сти, полученные в результате исследования большого количе­ства здоровых лиц. Приводится табл. 4, в которой для некоторых нервов и мышц указаны минимальные и максимальные в норме величины гальванической возбудимости; порог раздражения определен в миллиамперах.

В процессе изучения электровозбудимости было установ­лено, что сокращение легче всего получается с определенных участков нервов и мышц, с так называемых двигательных то­чек, или точек раздражения. Существуют особые схемы с ука­занием их (рис. 10 - 14).

Реакция перерождения, характерная для периферических параличей, относится к категории качественных изменений элек­тровозбудимости. К этой же категории относятся миотоническая

и миастеническая реакции. При миотонии возбудимость нерва остается нормальной, мышца же после полученного сокращения расслабляется крайне медленно. Для миастении характерна крайняя утомляемость мышцы, сказывающаяся в быстром исто­щении сократительной способно­сти ее при повторных раздражениях током.

Таблица 4

Нерв Порог раздра­жения, мА Мышца Порог раздра­жения, тА
Лицевой 1,0 - 2,5 M deltoideus 1,2 - 2,0
Кожно-мышечный 0,04 - 0,28 M serratus anticus 1,0 - 8,5
Срединный 0,3 - 1,5 M brachio-radialis 1,1-1,7
Локтевой 0,2 - 0,9 M extensor digitorum communis 0,6 - 3,0
Лучевой 0 9 - 2,7 2,5 - 2,8
Бедренный 0,4 - 1,7 0,9 - 2,9
Большеберцовый 0,4 - 2,5 M rectus femoris 1,6 - 6,0
Малоберцовый 0,2 - 2,0 M tibialis anticus 1,8 - 5,0

К количественным измене­ниям электровозбудимости нер­вов и мышц относятся: 1) повы­шение ее, когда для получения сокращения требуются токи мень­шей, чем. в норме, силы, или 2) понижение электровозбудимо­сти, когда для получения эффек­та необходимо применение токов большей силы, чем у здоровых людей.

Рис. 10. Расположение моторных точек на лице.

1 - n. hypoglossus; 2 - quadratus menti; 3 - levator menti: 4 - orbicularis oris; 5 - zygomaticus; 6 - orbicularis palpebra-rum; 7 - corrugatar superficialis; 8 - п. facialis; 9 - frontalis; 10 - temporalis; 11 - auricularis posterior; 12 - SJleiiius; 13 - n. accessorius.

Более новым и значительно более чувствительным методом исследования электровозбудимости нервов и мышц является хронаксиметрия. Было установ­лено, что действие тока определяется не только интенсивностью его, но и длитель­ностью действия на нерв или мышцу.

Сначала определяется реобаза, т. е. та минимальная интенсивность посто­янного тока, которая необходима, чтобы вызвать эффект - сокращение. Затем применяется ток в два раза большей интенсивности (двойная реобаза) и опре­деляется в тысячных долях секунды (сигмах) специальным аппаратом (хронаксиметром) минимальное время, достаточное для сокращения (хронаксия).

Хронакоиметрия позволила установить ряд новых и интересных фактов и закономерностей в физиологии и патологии нервной системы. Учение о хронаксии тесно смыкается с понятием о лабильности (Н.Е. Введенский, А.А. Ухтомский).

Так, оказалось, что проксимально расположенные мышцы имеют более ко­роткую хронаксию, чем дистальные; мышца и иннервирующий ее нерв имеют почти одинаковую хронаксию; мышцы-синергисты имеют одинаковую хронаксию, тогда как мышцы-антагонисты - иную; сгибатели верхних конечностей имеют хронаксию примерно в 2 раза меньшую, чем разгибатели (на нижних конечностях существует обратное соотношение).

Рис. 11. Расположение моторных то­чек на передней поверхности верхней конечности.

1 - abductor digiti minimi; 2 - opponens digiti minimi; 3 - flexor digiti minimi; 4 - lumbricales; 5 - palmaris brevis; 6 - n. ulnaris; 7 - flexor digitorum sublimis (IV. V); 8 - fle­xor digitorum sublimis (II, III);.9 - flexor digi­torum communis profundus; 10 - flexor carpi ulnaris; 11 - n. ulnaris; 12 - triceps (caput internum); 13 - triceps (caput longum); 14 - deltoideus; 15 - n. musculo-cutaneus; 16 - bi­ceps brachii; 17 - brachialis internus; 18 - n. medianus; 19 - supinator longus; 20 - pronator teres; 21 - flexor carpi radialis; 22 - flexor digitorum sublimis; 23 - flexor pollicis lon­gus; 24 - abductor pollicis brevis; 25 - opponens pollicis; 26 - flexor pollicis brevis; 27 - adductor pollicis.

Рис. 12. Расположение моторных то­чек на задней поверхности верхней конечности.

1 - interossei dorsales (I, II); 2 - extensor pol­licis brevis; 3 - abductor pollicis longus; 4- - extensor indicis proprius; 5 - extensor digito­rum communis; 6 - extensor carpi radialis brevis; 7 - extensor carpi radialis longus; 8 - supinator longus; 9 - brachialis internus; 10 - n. radialis; 11 - deltoideus; 12 и 13 - triceps; 14 - extensor carpi ulnaris; 15 - supi­nator brevis; 16 - extensor digiti minimi; 17 - supinator indicis; 18 - extensor pol­licis longus; 19 - abductor digiti minimi; 20 - interossei dorsales (III, IV).

В норме хронаксия различных мышц составляет от 0,0001 до 0,001 секунды, при периферических параличах она удлиняется до 0,05 - 0,006 секунды.

При центральных параличах (при пирамидном поражении) еще более уси­ливается расхождение в цифрах хронаксии сгибателей и разгибателей на руках и, наоборот, уменьшается разница цифр на ногах. При экстрапирамидных по­ражениях эта разница хронаксии уменьшается.

Хронаксиметрия является весьма тонким методом исследования, особенно при поражениях периферической нервной системы; изменения ее обычно пред­шествуют клиническим проявлениям и держатся дольше последних при их вы­равнивании.

В клинике, кроме электрической возбудимости, исследуется еще и механическая возбудимость нервов и мышц, которая мо­жет оказаться при некоторых заболеваниях повышенной или по­ниженной. Сокращение мышцы вызывается ударом по ней мо­лоточком. Механическая же возбудимость нервов исследует­ся или также ударом молоточка или «перекатыванием» под пальцем нервного ствола в том участке, где он легко прощупывается и может быть прижат к кости (например, локтевой нерв в sulcus ulnaris, малоберцо­вый - за capitulum fibulae). О степени механической возбуди­мости нервов судят по сокращению иннервируемых мышц. Так, удар по стволу лицевого нерва ниже скуловой дуги может вы­звать сокращение мимических мышц (феномен Хвостека); уча­стие различных мышц и интенсивность их сокращения укажут на уровень механической возбудимости лицевого нерва.

Рис. 13. Расположение моторных то­чек на передней поверхности нижней конечности.

1 - vastus internus; 2 - cruralis; 3 - adductor longus; 4 - adductor magnus; 5 - pectineus; 6 - obturatorius; 7 - n. femoralis; о - tensor fasciae latae; 9 - sartorius; 10 - quadriceps femoris; 11 - rectus femoris; 12 - vastus externus.

Рис. 14. Расположение моторных то­чек на задней поверхности нижней конечности.

1 - flexor hallucis longus; 2 - soleus; 3 - gastrocnemius (caput externum); 4 - n. peroneus; 5 - biceps femoris (caput brevis); б - bi­ceps femoris (caput longum); 7 - n. ischiadicus: 8 - gluteus maximus; 9 - adductor mag­nus; 70 - semitendinosus; 11 - semimembranosus; 12 - n. tibialis; 13 - gastrocnemius (caput internum); 14 - soleus; 15 - flexor digitorum communis longus; 16 - n. tibialis.

Таблица 5

Движение Мышцы Нервы Ядра черепных нервов и сегменты спинного мозга
Наморщивание лба кверху М. frontalis N. facialis Ядро n. facialis
Зажмуривание (смыкание) век М. orbicularis oculi N. facialis Ядро n. facialis
Поднятие верхнего века М. levator palpebrae superioris N. oculomotorius Ядро n. oculomotorii
Взгляд вверх Mm. rectus sup. и obliquus inf. N. oculomotorius Ядро n. oculomotorii
» вниз Mm. rectus inf. и obliquus sup. N. oculomotorius, n. trochlcaris Ядра n. oculomotorii и n. trochlearis
» в сторону M. rectus ext. и m. rectus int. N. abducens, n. ocu­lomotorius Ядра n. abducentis и n. oculomotorii
Конвергенция глаз­ных осей Mm. recti int. N. oculomotorius Ядра n. oculomo­torii
Оттягивание уг­лов рта кнаружи и вверх Mm. levator labii sup., zygomaticus, risorius N. facialis Ядро n. facialis
Вытягивание губ трубочкой, свист M. orbicularis oris N. facialis Ядро n. hypoglossi
Жевательные дви­жения (кусаю­щие), сжимание челюстей Mm. masseter, temporalis
Движения нижней челюсти в сторо­ны и вперед Mm. pterygoidei ext. et int. N. trigeminus (дви­гательная III ветвь) Ядро (двигатель­ное) n. trigemini
Открывание рта (оттягивание нижней челюсти книзу) M. genio-hyoideus Ansa hypoglossi I - II шейные сег­менты
Высовывание язы­ка M. genio-glossus N. hypoglossus Ядро n. hypoglossi
Поднятие мягкого нёба M. levator veli palatini N. vagus Ядро (двигатель­ное) nn. vagi, glosso-pharyngei
Глотание Mm. constrictores pharyngis, pharyngo-palatinus, stylopharyngeus N. vagus, n. glossopharyngeus Ядро (двигатель­ное) n. vagi и п. glosso-pharyngei
Голосовые связки Mm. crico-arytaenoidei и др. N. vagus Ядро (двигатель­ное) n. vagi
Сгибание головы вперед Mm. sterno-cleido-mastoidei, recti capitis и др. N. accessorius Willisii, Nn. cervicales I - III Ядро n. accessorii I - III шейные сег­менты
Сгибание головы кзади Mm. splenii, recti capitis posteriores Nn. cervicales I - IV шейные сег­менты
Поворот головы в сторону Mm. sterno-cleido-mastoidei и др. N. accessorius Ядро n. accessorii
Сгибание тулови­ща кпереди Mm. recti и obliqui abdominis Nn. thoracales VII - XII VII - XII грудные сегменты
Разгибание позво­ночника Mm. longissimi dorsi, m. spinalis dorsi и др. Nn. spinales poste­riores Грудные сегменты
Сгибание позво­ночника в сто­роны M. quadratus lumborum и др. Rr. musculares из plexus lumbalis I - IV поясничные сегменты
Движения диафраг­мы Мышца диафрагмы N. phrenicus IV шейный сег­мент
Поднятие плеч (по­жимание плеча­ми) М. trapezius N. accessorius Ядро n. accessorii
Ротация плеча кна­ружи Mm. tercs minor, supra- и infraspinatus N. suprascapularis IV - V шейные сегменты
Ротация плеча кнутри M. teres major, m. subscapularis N. subscapularis V - VI шейные сегменты
Поднятие рук до горизонтали M. deltoideus N. axillaris V шейный сег­мент
Поднятие рук вы­ше горизонтали M. trapezius, m. serratus anterior N. axillaris, n. ac­cessorius, n. thoracicus longus V - VI шейные сегменты
Сгибание в локте­вом суставе M. biceps и др. N. musculocutaneus V - IV шейные сегменты
Супинация пред­плечья Mm. supinatorcs brcvis et longus N. radialis V - VI шейные сегменты
Разгибание в лок­тевом суставе M. triceps N. radialis VII шейный сег­мент
Пронация пред­плечья Mm. pronatores te­res et quadratus N. medianus VII - VIII шейные сегменты
Сгибание кисти Mm. flexores carpi N. medianus, n. ulnaris VIII шейный сег­мент
Разгибание кисти Mm. extensores carpi N. radialis VII шейный сег­мент
Сгибание пальцев руки Mm. interossei, mm flexores di-gitorum N. medianus, n ulnaris VIII шейный сег­мент
Разгибание паль­цев руки Mm. extensores digitorum N. radialis VII шейный сег­мент
Отведение и при­ведение („растопыривание») пальцев Mm. interossei N. ulnaris VIII шейный сег­мент
Сгибание основных фаланг при одно­временном раз­гибании средних и концевых фа­ланг Mm. lumbricales, mm. interossei N. medianus, n. ul­naris VIII шейный сег­мент
Сгибание в тазо­бедренном суста­ве (приведение бедра к животу) M. ilio-psoas и др. N. femoralis
Разгибание в тазо­бедренном суста­ве M. glutaeus maximus N. glutaeus infe­rior
Приведение бедра Mm. adductores и др. N. obturatorius II - III пояснич­ные сегменты
Отведение бедра Mm. glutaeus mini­mus N. glutaeus supe­rior IV - V пояснич­ные сегменты
Ротация бедра кну-три Mm. glutaei medius et minimus N. glutaeus supe­rior IV - V поясничные сегменты
Разгибание в ко­ленном суставе M. quadriceps fe-moris N. femoralis III - IV пояснич­ные сегменты
Сгибание в колен­ном суставе M. biceps femoris, m. semitendinosus, m. semimembranosus и др. N. ischiadicus V поясничный - I крестцовый сег­менты
Ротация бедра кна­ружи M. gluteus maximus, m. pyriformis, mm. gemelli, mm. obturatores N. glutaeus inferior, n. ischiadicus, n. obturatorius IV - V пояснич­ные - I крестцовый сегменты
Разгибание стопы M. tibialis anticus N. peronaeus IV - V пояснич­ные сегменты
Сгибание стопы M. triceps surae N. tibialis I - II крестцовые сегменты
Отведение стопы Mm. peronaei N. peronaeus IV - V пояснич­ные сегменты
Приведение стопы Mm. tibiales ant., post. N. tibialis, n. pero­naeus }

 

 

Это интересно: