→ Какие органы образует мышечная ткань. Функции мышечных тканей, виды и структура. Поперечнополосатая мышечная ткань

Какие органы образует мышечная ткань. Функции мышечных тканей, виды и структура. Поперечнополосатая мышечная ткань

По морфологическим признакам выделяют три группы мышц:

1) поперечно-полосатые мышцы (скелетные мышцы);

2) гладкие мышцы;

3) сердечную мышцу (или миокард).

Функции поперечно-полосатых мышц:

1) двигательная (динамическая и статическая);

2) обеспечения дыхания;

3) мимическая;

4) рецепторная;

5) депонирующая;

6) терморегуляторная.

Функции гладких мышц:

1) поддержание давления в полых органах;

2) регуляция давления в кровеносных сосудах;

3) опорожнение полых органов и продвижение их содержимого.

Функция сердечной мышцы – насосная, обеспечение движения крови по сосудам.

1) возбудимость (ниже, чем в нервном волокне, что объясняется низкой величиной мембранного потенциала);

2) низкая проводимость, порядка 10–13 м/с;

3) рефрактерность (занимает по времени больший отрезок, чем у нервного волокна);

4) лабильность;

5) сократимость (способность укорачиваться или развивать напряжение).

Различают два вида сокращения:

а) изотоническое сокращение (изменяется длина, тонус не меняется);

б) изометрическое сокращение (изменяется тонус без изменения длины волокна). Различают одиночные и титанические сокращения. Одиночные сокращения возникают при действии одиночного раздражения, а титанические возникают в ответ на серию нервных импульсов;

6) эластичность (способность развивать напряжение при растягивании).

Физиологические особенности гладких мышц.

Гладкие мышцы имеют те же физиологические свойства, что и скелетные мышцы, но имеют и свои особенности:

1) нестабильный мембранный потенциал, который поддерживает мышцы в состоянии постоянного частичного сокращения – тонуса;

2) самопроизвольную автоматическую активность;

3) сокращение в ответ на растяжение;

4) пластичность (уменьшение растяжения при увеличении растяжения);

5) высокую чувствительность к химическим веществам.

Физиологической особенностью сердечной мышцы является ее автоматизм . Возбуждение возникает периодически под влиянием процессов, протекающих в самой мышце. Способностью к автоматизму обладают определенные атипические мышечные участки миокарда, бедные миофибриллами и богатые саркоплазмой.

2. Механизмы мышечного сокращения

Электрохимический этап мышечного сокращения.

1. Генерация потенциала действия. Передача возбуждения на мышечное волокно происходит с помощью ацетилхолина. Взаимодействие ацетилхолина (АХ) с холинорецепторами приводит к их активации и появлению потенциала действия, что является первым этапом мышечного сокращения.

2. Распространение потенциала действия. Потенциал действия распространяется внутрь мышечного волокна по поперечной системе трубочек, которая является связывающим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна.

3. Электрическая стимуляция места контакта приводит к активации фермента и образованию инозилтрифосфата, который активирует кальциевые каналы мембран, что приводит к выходу ионов Ca и повышению их внутриклеточной концентрации.

Хемомеханический этап мышечного сокращения.

Теория хемомеханического этапа мышечного сокращения была разработана О. Хаксли в 1954 г. и дополнена в 1963 г. М. Девисом. Основные положения этой теории:

1) ионы Ca запускают механизм мышечного сокращения;

2) за счет ионов Ca происходит скольжение тонких актиновых нитей по отношению к миозиновым.

В покое, когда ионов Ca мало, скольжения не происходит, потому что этому препятствуют молекулы тропонина и отрицательно заряды АТФ, АТФ-азы и АДФ. Повышенная концентрация ионов Ca происходит за счет поступления его из межфибриллярного пространства. При этом происходит ряд реакций с участием ионов Ca:

1) Ca2+ реагирует с трипонином;

2) Ca2+ активирует АТФ-азу;

3) Ca2+ снимает заряды с АДФ, АТФ, АТФ-азы.

Взаимодействие ионов Ca с тропонином приводит к изменению расположения последнего на актиновой нити, открываются активные центры тонкой протофибриллы. За счет них формируются поперечные мостики между актином и миозином, которые перемещают актиновую нить в промежутки между миозиновой нитью. При перемещении актиновой нити относительно миозиновой происходит сокращение мышечной ткани.

Итак, главную роль в механизме мышечного сокращения играют белок тропонин, который закрывает активные центры тонкой протофибриллы и ионы Ca.

Физиология скелетных и гладких мышц

Лекция 5

У позвоночных и человека три вида мышц : поперечнополосатые мышцы скелета, поперечнополосатая мышца сердца – миокард и гладкие мышцы, образуюцие стенки полых внутренних органов и сосудов.

Анатомической и функциональной единицей скелетных мышц является нейромоторная единица - двигательный нейрон и иннервируемая им группа мышечных волокон. Импульсы, посылаемые мотонейроном, приводят в действие все образующие ее мышечные волокна.

Скелетные мышцы состоят из большого количества мышечных волокон. Волокно поперечнополосатой мышцы имеет вытянутую форму, диаметр его от 10 до 100 мкм, длина волокна от нескольких сантиметров до 10-12 см. Мышечная клетка окружена тонкой мембраной – сарколеммой , содержит саркоплазму (протоплазму) и многочисленные ядра . Сократительной частью мышечного волокна являются длинные мышечные нити – миофибриллы , состоящие в основном из актина, проходящие внутри волокна от одного конца до другого, имеющие поперечную исчерченность. Миозин в гладких мышечных клетках находится в дисперсном состоянии, но содержит много белка, играющего важную роль в поддержании длительного тонического сокращения.

В период относительного покоя скелетные мышцы полностью не расслабляются и сохраняют умеренную степень напряжения, т.е. мышечный тонус .

Основные функции мышечной ткани:

1)двигательная – обеспечение движения

2)статическая – обеспечение фиксации, в том числе и в определенной позе

3)рецепторная – в мышцах имеются рецепторы, позволяющие воспринимать собственные движения

4)депонирующая – в мышцах запасаются вода и некоторые питательные вещества.

Физиологические свойства скелетных мышц:

Возбудимость . Ниже, чем возбудимость нервной ткани. Возбуждение распространяется вдоль мышечного волокна.

Проводимость . Меньше проводимости нервной ткани.

Рефрактерный период мышечной ткани более продолжителен, чем нервной ткани.

Лабильность мышечной ткани значительно ниже, чем нервной.

Сократимость – способность мышечного волокна изменять свою длину и степень напряжения в ответ на раздражение пороговой силы.

При изотоническом сокращении изменяется длина мышечного волокна без изменения тонуса. При изометрическом сокращении возрастает напряжение мышечного волокна без изменения его длины.

В зависимости от условий стимуляции и функционального состояния мышцы может возникнуть одиночное, слитное (тетаническое) сокращение или контрактура мышцы.

Одиночное мышечное сокращение. При раздражении мышцы одиночным импульсом тока возникает одиночное мышечное сокращение.

Амплитуда одиночного сокращения мышцы зависит от количества сократившихся в этот момент миофибрилл. Возбудимость отдельных групп волокон различна, поэтому пороговая сила тока вызывает сокращение лишь наиболее возбудимых мышечных волокон. Амплитуда такого сокращения минимальна. При увеличении силы раздражающего тока в процесс возбуждения вовлекаются и менее возбудимые группы мышечных волокон; амплитуда сокращений суммируется и растет до тех пор, пока в мышце не останется волокон, не охваченных процессом возбуждения. В этом случае регистрируется максимальная амплитуда сокращения, которая не увеличивается, несмотря на дальнейшее нарастание силы раздражающего тока.

Тетаническое сокращение . В естественных условиях к мышечным волокнам поступают не одиночные, а ряд нервных импульсов, на которые мышца отвечает длительным, тетаническим сокращением, или тетанусом . К тетаническому сокращению способны только скелетные мышцы. Гладкие мышцы и поперечнополосатая мышца сердца не способны к тетаническому сокращению из-за продолжительного рефрактерного периода.

Тетанус возникает вследствие суммации одиночных мышечных сокращений. Чтобы возник тетанус, необходимо действие повторных раздражений (или нервных импульсов) на мышцу еще до того, как закончится ее одиночное сокращение.

Если раздражающие импульсы сближены и каждый из них приходится на тот момент, когда мышца только начала расслабляться, но не успела еще полностью расслабиться, то возникает зубчатый тип сокращения (зубчатый тетанус ).

Если раздражающие импульсы сближены настолько, что каждый последующий приходится на время, когда мышца еще не успела перейти к расслаблению от предыдущего раздражения, то есть происходит на высоте ее сокращения, то возникает длительное непрерывное сокращение, получившее название гладкого тетануса .

Гладкий тетанус – нормальное рабочее состояние скелетных мышц обусловливается поступлением из ЦНС нервных импульсов с частотой 40-50 в 1с.

Зубчатый тетанус возникает при частоте нервных импульсов до 30 в 1с. Если мышца получает 10-20 нервных импульсов в 1с, то она находится в состоянии мышечного тонуса , т.е. умеренной степени напряжения.

Утомление мышц . При длительном ритмическом раздражении в мышце развивается утомление. Признаками его являются снижение амплитуды сокращений, увеличение их латентных периодов, удлинение фазы расслабления и, наконец, отсутствие сокращений при продолжающемся раздражении.

Еще одна разновидность длительного сокращения мышц - контрактура . Она продолжается и при снятии раздражителя. Контрактура мышцы наступает при нарушении обмена веществ или изменении свойств сократительных белков мышечной ткани. Причинами контрактуры могут быть отравление некоторыми ядами и лекарственными средствами, нарушение обмена веществ, повышение температуры тела и другие факторы, приводящие к необратимым изменениям белков мышечной ткани.

Ткань - это совокупность схожих по строению клеток, которые объединены общими функциями. Практически все состоят из разных типов тканей.

Классификация

У животных и человека в организме присутствуют следующие типы тканей:

  • эпителиальная;
  • нервная;
  • соединительная;
  • мышечная.

Эти группы объединяют по несколько разновидностей. Так, соединительная ткань бывает жировой, хрящевой, костной. Также сюда относятся кровь и лимфа. Эпителиальная ткань существует многослойная и однослойная, в зависимости от строения клеток можно выделить также плоский, кубический, цилиндрический эпителий и т. д. Нервная бывает только одного вида. А о мы поговорим подробнее в этой статье.

Виды мышечной ткани

В организме всех животных выделяют три ее разновидности:

  • поперечно-полосатые мышцы;
  • сердечная мышечная ткань.

Функции гладкой мышечной ткани отличаются от таковых у поперечно-полосатой и сердечной, поэтому другое у нее и строение. Давайте рассмотрим подробнее структуру каждого вида мускулатуры.

Общая характеристика мышечных тканей

Так как все три вида относятся к одному типу, у них есть много общего.

Клетки мышечной ткани называются миоцитами, или волокнами. В зависимости от разновидности ткани, они могут иметь различную структуру.

Еще одним общим признаком всех видов мышц является то, что они способны сокращаться, однако у разных видов этот процесс происходит индивидуально.

Особенности миоцитов

Клетки гладкой мышечной ткани, как и поперечно-полосатой и сердечной, обладают вытянутой формой. Кроме того, в них есть особые органоиды, которые называются миофибриллы, или миофиламенты. В них содержатся (актин, миозин). Они необходимы для того, чтобы обеспечить движение мышцы. Обязательным условием функционирования мускула, кроме наличия сократительных белков, также является присутствие в клетках ионов кальция. Поэтому недостаточное или избыточное употребление продуктов с высоким содержанием данного элемента может привести к некорректной работе мускулатуры - как гладкой, так и поперечно-полосатой.

Кроме того, в клетках присутствует еще один специфический белок - миоглобин. Он необходим для того, чтобы связываться с кислородом и запасать его.

Что касается органоидов, то кроме наличия миофибрилл особенным для мышечных тканей является содержание большого количества в клетке митохондрий - двумембранных органоидов, отвечающих за клеточное дыхание. И это неудивительно, так как мышечному волокну для сокращения необходимо большое количество энергии, вырабатываемой при дыхании митохондриями.

В некоторых миоцитах также присутствует более чем одно ядро. Это характерно для поперечно-полосатой мускулатуры, в клетках которой может содержаться около двадцати ядер, а иногда эта цифра доходит и до ста. Это связано с тем, что волокно поперечно-полосатой мышцы сформировано из нескольких клеток, объединенных впоследствии в одну.

Строение поперечно-полосатых мышц

Данный тип ткани еще называют скелетной мускулатурой. Волокна этого типа мышц длинные, собранные в пучки. Их клетки могут достигать нескольких сантиметров в длину (вплоть до 10-12). В них содержится много ядер, митохондрий и миофибрилл. Основная структурная единица каждой миофибриллы поперечно-полосатой ткани - саркомер. Он состоит из сократительного белка.

Главная особенность этой мускулатуры заключается в том, что она может контролироваться сознательно, в отличие от гладкой и сердечной.

Волокна данной ткани прикрепляются к костям с помощью сухожилий. Именно поэтому такие мышцы и называются скелетными.

Структура гладкой мышечной ткани

Гладкие мышцы выстилают некоторые внутренние органы, такие как кишечник, матка, мочевой пузырь, а также сосуды. Кроме того, из них формируются сфинктеры и связки.

Гладкое мышечное волокно не такое длинное, как поперечно-полосатое. Но толщина его больше, чем в случае со скелетными мускулами. Клетки гладкой мышечной ткани обладают веретоноподобной формой, а не нитевидной, как миоциты поперечно-полосатой.

Структуры, которые обесечивают сокращение гладких мышц, называются протофибриллами. В отличие от миофибрилл, они обладают более простой структурой. Но материал, из которого они построены, - все те же сократительные белки актин и миозин.

Митохондрий в миоцитах гладкой мускулатуры также меньше, чем в клетках поперечно-полосатой и сердечной. Кроме того, в них содержится только одно ядро.

Особенности сердечной мышцы

Некоторые исследователи определяют ее как подвид поперечно-полосатой мышечной ткани. Их волокна и вправду во многом похожи. Клетки сердца - кардиомиоциты - также содержат несколько ядер, миофибриллы и большое количество митохондрий. Данная ткань, как и способна сокращаться намного быстрее и сильнее, нежели гладкая мускулатура.

Однако основной особенностью, отличающей сердечную мышцу от поперечно-полосатой, является то, что она не может контролироваться сознательно. Сокращение ее происходит только автоматически, как и в случае с гладкими мышцами.

В составе сердечной ткани, кроме типичных клеток, присутствуют также секреторные кардиомиоциты. Они не содержат в себе миофибрилл и не сокращаются. Эти клетки отвесают за выработку гормона атриопептина, который необходим для регуляции артериального давления и контроля объема циркулирующей крови.

Функции поперечно-полосатых мышц

Основная их задача - перемещение тела в пространстве. Также это перемещение частей тела относительно друг друга.

Из других функций поперечно-полосатых мышц можно отметить поддержание позы, депо воды и солей. Кроме того, они выполняют защитную роль, что особенно касается мышц брюшного пресса, предотвращающих механическое повреждение внутренних органов.

К функциям поперечно-полосатой мускулатуры можно также причислить регуляцию температуры, так как при активном сокращении мышц происходит выделение значительного количества тепла. Вот почему при перемерзании мышцы начинают непроизвольно дрожать.

Функции гладкой мышечной ткани

Мускулатура данного вида выполняет эвакуаторную функцию. Она заключается в том, что гладкие мышцы кишечника проталкивают каловые массы к месту их выведения из организма. Также эта роль проявляется при родах, когда гладкие мышцы матки выталкивают плод из органа.

Функции гладкой мышечной ткани этим не ограничиваются. Также немаловажна их сфинктерная роль. Из ткани данного вида формируются специальные круговые мышцы, которые могут смыкаться и размыкаться. Сфинктеры присутствуют в мочевых путях, в кишечнике, между желудком и пищеводом, в желчном пузыре, в зрачке.

Еще одна важная роль, которую играют гладкие мышцы, - формирование связочного аппарата. Он необходим для поддержания правильного положения внутренних органов. При понижении тонуса этих мышц может происходить опущение некоторых органов.

На этом функции гладкой мышечной ткани заканчиваются.

Предназначение сердечной мышцы

Здесь, в принципе, особо говорить не о чем. Основная и единственная функция этой ткани - обеспечение циркуляции крови в организме.

Вывод: различия между тремя видами мышечной ткани

Для раскрытия этого вопроса представляем таблицу:

Гладкая мускулатура Поперечно-полосатые мышцы Сердечная мышечная ткань
Сокращается автоматически Может контролироваться сознательно Сокращается автоматически
Клетки удлинненные, веретеноподобные Клетки длинные, нитевидные Удлинненные клетки
Волокна не объединяются в пучки Волокна объединяются в пучки Волокна объединяются в пучки
Одно ядро в клетке Несколько ядер в клетке Несколько ядер в клетке
Сравнительно небольшое количество митохондрий Большое количество митохондрий
Отсутствуют миофибриллы Присутствуют миофибриллы Есть миофибриллы
Клетки способны делиться Волокна не могут делиться Клетки не могут делиться
Сокращаются медленно, слабо, ритмично Сокращаются быстро, сильно Сокращаются быстро, сильно, ритмично
Выстилают внутренние органы (кишечник, матка, мочевой пузырь), формируют сфинктеры Крепятся к скелету Формируют сердце

Вот и все основные характеристики поперечно-полосатой, гладкой и сердечной мышечных тканей. Теперь вы ознакомлены с их функциями, строением и главными различиями и сходствами.

Мышечная ткань (латинское название - textus muscularis) образует мускулы, которые обеспечивают двигательные функции живого организма. Эти образования различны по формам и свойствам. Строение мышечной ткани клеточное. Мускулы - комплексы вытянутых эластичных элементов, способных реагировать на импульсы, посылаемые нервной системой. Раздражающие сигналы, поступающие от ЦНС, заставляют мышечную ткань сокращаться и приводить в движение опорно-двигательный аппарат человека. Строение мышечной ткани позволяет организму делать запасы энергии, а затем использовать их для самостоятельного передвижения в течение длительного времени. Гладкая мускулатура, как и остальные резиденты организма получает комплексное питание, состоящее из полезных веществ и кислорода, которые доставляются посредством кровотока Это сложный биохимический процесс, ориентированный на укрепление и развитие миоцитов - клеток, лежащих в основе структуры мышечной ткани. Успешное замещение энергетических ресурсов, утраченных в результате активной жизнедеятельности человека, является залогом дальнейшего полноценного функционирования всех органов. Мышечная ткань аккумулирует энергию на непродолжительное время, необходимость ее использования возникает практически ежеминутно.

Миоциты

Основные двигательные функции организма возложены природой на мускульные образования, название которых "гладкая мышечная ткань". В ее биологическом устройстве преобладают одноядерные клетки веретеновидной формы. Это миоциты - структурная единица гладкой мышечной ткани. Длина их колеблется от 15 до 500 мкм, что позволяет мускулам действовать в достаточно широком диапазоне сокращений. Нервная система организма настроена на использование всех возможностей миоцитных структур. Гладкая мышечная ткань функционирует преимущественно в режиме медленных сокращений, благодаря взаимодействию миозина с актином. Расслабление ее происходит также плавно. Вместе с тем гладкая мышечная ткань, функции которой достаточно разнообразны, способна к сокращениям большой силы. Например, при родах мускулатура матки создает сильнейшее напряжение, направленное на выталкивание плода. Сокращения непрерывно следуют одно за другим в течение продолжительного времени, при этом каждая клетка гладкой мышечной ткани матки несет в себе заряд неиссякаемой энергии, в результате чего родовые схватки, в отдельных случаях, продолжаются часами. Процесс запрограмирован природой, как "обязательный к исполнению". При этом гладкая мышечная ткань, функции которой имеют достаточно сложный характер, совершенно не поддается интеллектуальному контролю и подчиняется исключительно импульсам, поступающим от центральной нервной системы. Это обстоятельство создает определенные трудности для врачей и среднего медицинского персонала, которые лишены возможности воздействовать на процесс.

Рефлекторный автоматизм

Гладкая мышечная ткань образует стенки многих внутренних органов: желудка, кишечника, крупных кровеносных сосудов. Каждая часть организма, деятельность которой связана с сократительными функциями, содержит то или иное количество мускульных волокон. Сила сокращений мышцы напрямую зависит от ее целевого назначения. Например, гладкая мускулатура спины может резко активизироваться в случае поднятия человеком тяжелого груза, мешка с цементом или доверху набитого ящика с овощами. Произойдет очень мощное сокращение мышечной массы, энергия будет передана на скелет. Причем произойдет это автоматически, без всякого интеллектуального вмешательства самого грузчика.

Возможности регенерации

Гладкая мышечная ткань, функциикоторой достаточно универсальны, выполняет роль связующего звена между отдельными фрагментами организма. Она соединяет их своеобразными эластичными мостами. Целостность структурных образований в теле человека во многом обеспечивается именно мышечными слоями, расположенными повсеместно. Дислокация мускулов отличается рациональностью, логика их присутствия однозначна. В организме человека нет дублирующих органов, за исключением внешних, на которые возложены функции основных чувств, например, это глаза и уши. Природа предусмотрела возможность утраты какой-то части, при этом функция сохраняется за счет дублера. Мышечные образования существуют только в одном экземпляре, при утрате какого-то из них наступает частичная инвалидность. Человеческие мускулы не обладают способностью к регенерации утраченных или поврежденных структур, как это происходит у ящериц и некоторых других земноводных и пресмыкающихся. Нарушенный участок просто отмирает или приходит в состояние малой активности. В некоторых случаях потеря активности мышечной структуры оканчивается гибелью всего организма. Так происходит при утрате активности сердечной мышцы, которая по каким-либо причинам патологического характера теряет способность к фукционированию. В результате возникает кардиологическая недостаточность, несовместимая с жизнью.

Гладкая и поперечнополосатая мышечные ткани

В человеческом организме функционируют несколько видов мускульных образований. Поперечно-полосатая мышечная ткань состоит из миоцитов длиной до 4-5 сантиметров. Их диаметр колеблется от 50 до 120 мкм. Ядер в клетках большое количество, 100 и более единиц. Цитоплазма этих миоцитов выглядит под микроскопом как масса, расчерченная перемежающимися темными и светлыми полосками. В отличие от гладкой, поперечно-полосатая мускулатура обладает высокой скоростью сокращения и расслабления, она образует комплекс скелетных мышц, верхнюю часть пищевода, язык и приводит в движение гортань. Волокна поперечно-полосатых мышц достигают длины 10-12 сантиметров.

Кардиология

Особое место в организме занимает поперечно-полосатая мышечная ткань, которая состоит из кардиомиоцитов с поперечной исчерченностью цитоплазмы. Клетки имеют разветвленную структуру и образуют специфические соединения - диски вставочные. Существует также другая межклеточная структура - анастомоз, в котором цитолеммы отдельных клеток слипаются. Эта разновидность мышечной ткани является материалом для образования миокарда сердца. Особое свойство такой ткани - способность к ритмическим сокращениям под влиянием возбуждения, возникающего непосредственно в самих клетках. Существует еще один вид кардиомиоцитов - секреторных, отличающихся отсутствием фибрилл. Эти клетки генерируют гормон тропонин, снижающий артериальное давление.

Гладкие мышцы отличаются от поперечно-полосатых тем, что на их деятельность затрачивается сравнительно небольшое количество калорий и, таким образом, появление синдрома усталости отдаляется. Этот фактор является одним из самых существенных в жизнедеятельности организма. Однако гладкая мышечная ткань, особенности строения которой располагают к экономии энергии, тем не менее обладает способностью активного функционирования за счет одномоментного выброса калорийного заряда. Этого хватает на одно-два сокращения, чего в ряде случаев бывает достаточно. В целом гладкая мускулатура предрасположена к медленным действиям, не связанным с экстремальными ситуациями. В этом случае ее работа стабильна и надежна.

Структура

Ядра тканевых клеток - миоцитов имеют палочковидную форму. Их расположение в самом центре родительского образования обусловлено наличием гетерофроматина. При сокращении клетки вытянутое ядро изгибается, а при особо интенсивной реакции на сигнал центральной нервной системы даже закручивается. У ядерных полюсов в этот момент собирается значительное количество митохондрий, которые являются разновидностью органелл, вспомогательных внутриклеточных структур.

Гладкие мышцы не имеют поперечной структуризации, их клеточная цитоплазма содержит множество различных агентов, в число которых входят: жировые, пигментные, углеводные. Присутствуют также кавеолы и пиноцитозные пузырьки, привлекающие ионы кальция. Цитоплазма гладкомышечных клеток при микроскопическом исследовании открывает миозиновые миофиламенты, толстые и тонкие актиновые, расположенные вдоль длинной клеточной оси. Благодаря межмолекулярному взаимодействию с миозином, филоменты сближаются, процесс передается на цитолему, плазматическую мембрану и только после этого происходит сокращение мышцы.

Поскольку строение гладкой мышечной ткани клеточное, миоциты представлены в широком ассортименте по всему организму. В матке, эндокарде, мочевом пузыре, аорте и многих других органах они присутствуют в виде отростковых клеток, которые тесно взаимодействуют друг с другом. Процесс воспроизводства новых миоцитов подчиняется логике биохимической регенерации, но вместе с тем он отличается определенной способностью к фильтрации элементов. Таким образом, вновь возникшие миоциты подвергаются отбору, выживают только здоровые. Такая система вполне себя оправдывает, поскольку в этом случае мышечная ткань полноценно обновляется в непрерывном режиме.

Двигательные функции

Особенности гладкой мышечной ткани еще и в том, что оболочка каждого миоцита обволакивается базальной мембраной, привлекающей коллагеновые фибриллы. В мембране есть отверстия, через которые клетки контактируют друг с другом. Взаимодействие может быть условным или репродуктивным. Миоциты, кроме того, окружены ретикулярными коллагеновыми волокнами, образующими сеточный эндомизий, связывающий соседние клетки.

Функциональные возможности организма зависят от того, как работает мускулатура человека, слаженно или спонтанно. Гладкой мышечной тканью образованы целые двигательные комплексы, которые запускаются рефлекторно, посредством одного или двух импульсов, посылаемых центральной нервной системой. Это касается только привычных, часто повторяющихся телодвижений. В других, неординарных проявлениях жизнедеятельности человека мышцы находятся в постоянной готовности к действию. Фактор неожиданности учитывается на уровне психологии, при необходимости происходит резкая активизация деятельности мускулатуры, адекватно ситуации.

Защитные функции

Гладкой мышечной тканью образованы также различные схемы противодействия внешним раздражителям. При этом организм справляется с проблемами, наступившими извне, без непосредственного участия интеллекта, только за счет мускульных рефлексов. В этом случае в полной мере используется сократительная функция гладкомышечной массы. После нормализации обстановки наступает ее расслабление.

Мимика лица

Человек постоянно находится в окружении так называемого социума, днем он контактирует с коллегами по работе, вечером пребывает в кругу семьи, по выходным дням посещает общественные места. Люди, с которыми индивидуум общается, видят его лицо, отражающее чувства, настроение, радость или печаль, гнев или веселье. Перемены отчетливо видны окружающим. Всеми процессами, меняющими выражение лица, управляют мимические мышцы. Гладкая мышечная ткань, расположенная в передней части головы, обеспечивает полный спектр изменений, касающихся эмоционального состояния человека в определенный отрезок времени.

От взаимодействия группы мышц, управляющих лицевыми компонентами, зависит не только выражение лица, но и глаз, поскольку гладкая мускулатура приводит в движение глазные яблоки, регулирует диаметр зрачка. Веки также находятся под ее воздействием, микроскопические мышцы присутствуют даже под ресницами, их функция - обеспечить правильное положение волосков. Некоторые группы мышц обладают способностью к автоматическому функционированию. Например, верхние веки периодически закрываются на доли секунды, чтобы потом вернуться в первоначальное положение. Это происходит потому, что глаз нуждается в обновлении слизистой роговицы и всей передней части глазного яблока. Глаза "моргают" с интервалом в 10-15 секунд и эта цикличность задается самой мышечной тканью, в недрах ее волокон возникает импульс, который инициирует моргание. Если на слизистую оболочку глазного яблока попадает инородное тело, даже микроскопических размеров, это становится поводом для частого, интенсивного моргания, которое продолжается, пока причина раздражения не будет устранена.

Нервный тик

Иногда цикличность нарушается и происходит беспорядочное опускание верхнего века, часто конвульсивного характера. Это может происходить синхронно на обоих глазах или только на одном. Явление называется "нервный тик" и считается достаточно болезненным предвестником патологического расстройства. Необходимо сразу обратиться к врачу.

Нервный тик может появиться и на других участках, например, на щеках. Он выражается в периодическом подергивании мускулатуры в определенных точках. Как правило, подобные явления беспокоят человека. Страдает эстетика лица, кроме того, возникает чувство дискомфорта. Чтобы избавиться от неприятных ощущений, следует сначала промассировать проблемный участок, а затем проконсультироваться с врачом. Подкожное расположение плоской мускулатуры лица предполагает массаж, как средство для поднятия общего тонуса. Существуют методики, специально разработанные специалистами, которые ориентированы на разглаживание морщин и придание эластичности коже. Однако при этом необходимо контролировать мимические эмоции. Например, улыбка должна быть достаточно сдержанной, чтобы кожа на лице не собиралась в складки.

В некоторых случаях гладкая мышечная ткань лица теряет стабильность и начинает подергиваться по причине психологического характера, причиной может стать бессонница или общее нервное напряжение. Тогда необходимо успокоиться, принять легкие фармацевтические препараты и посоветоваться с врачом.

Мышечная ткань - это особенная ткань тела человека, выполняющая двигательную функцию. Ее клетки (миоциты) обладают способностью к сокращению, обеспечивая тем самым движение тела человека. Мышечная ткань у эмбриона начинает формироваться примерно на 17 день после оплодотворения, таким образом, ребенок рождается, имея все мышцы. Мускулатура человека состоит из мышечных тканей, которые составляют около 40% всей массы человеческого тела.

Виды

По своему строению все мышечные ткани делятся на поперечнополосатые и гладкие. Кроме того, существует и промежуточный вариант - это сердечная поперечнополосатая ткань. Она состоит из клеток, связанных между собой в сеть посредством крупных ветвлений, составляющих подобия мышечных волокон.

Поперечнополосатые мышцы

Большую часть мускулатуры человека составляют поперечнополосатые мышцы - к этой группе принадлежат все скелетные мышцы . Они состоят из продолговатых мышечных волокон диаметром 0,01-0,06 мм. Волокна имеют разную длину (самые длинные - 10 см). Соединительная ткань объединяет их в более крупные пучки. Мышцы соединительнотканной оболочки (фасции) образуют влагалища для мышц, которые защищают эти пучки от внешнего воздействия. С обоих концов мышцы переходят либо в короткие сухожилия, прикрепленные к близлежащим костям, либо - в длинные цилиндрические, направляющиеся к дальше расположенным костям. Каждое мышечное волокно состоит из мельчайших волокон - миофибрилл, отдельные части миофибрилл - нитевидные протеиновые молекулы актина и миозина - всегда занимают одинаковое положение по отношению друг к другу и при исследовании миофибрилл через микроскоп видны поперечные полосы, поэтому мышцы и называют поперечнополосатыми.

На поперечнополосатые мышцы можно оказать воздействие усилием воли, за исключением сердечной (хотя ее волокна и поперечнополосатые, их деятельность от воли человека не зависит). Строение сердечной скелетных мышц сильно различается.

Гладкие мышцы

Имеются во всех полых органах человека - в желудке, кишечнике, мочевом пузыре, кровеносных сосудах и др. Мышечные волокна гладких мышц состоят из веретенообразных клеток. Чаще всего волокна располагаются тонкими слоями.

Каждому знакомо ощущение, появляющееся после большой физической нагрузки, когда любое движение дается с трудом - это болезненная усталость мышц. Ее причина - накопление в мышцах продуктов обмена веществ, прежде всего, молочной кислоты. Это ощущение возникает также вследствие разрыва мышечных волокон. Эффективное средство профилактики - горячая ванна после физической нагрузки или специальные упражнения на растяжение мышц.

Функции

Мышцы - это активные органы опорно-двигательного аппарата, которые, сокращаясь, приводят в движение кости и части тела. Сокращение поперечнополосатых мышц вызывают моторные (двигательные) нервы, на функцию которых человек усилием воли может оказывать воздействие. Поэтому поперечнополосатые мышцы еще называют «зависимыми от воли человека». Между тем, сокращение гладких мышц вызывают импульсы, исходящие из вегетативной (автономной) нервной системы, и человек не может контролировать их сокращение.

Поперечнополосатые мышцы, которые можно укрепить с помощью тренировок, обеспечивают регулируемые телодвижения человека. Название этих мышц может отражать функцию, которую они выполняют: отводящие (абдукторы), приводящие (аддукторы), вращатели (ротаторы), сгибатели (флексоры), разгибающие (экстензоры). Задача гладких мышц - сокращаясь, выталкивать из полого органа его содержимое, изменять просвет (например, кровеносных сосудов).

В статье мы рассмотрим виды мышечных тканей. Это очень важная тема в биологии, ведь каждый должен знать, как функционируют наши мышцы. Они представляют собой сложную систему, изучение которой, надеемся, вам будет интересно. А помогут лучше представить себе виды мышечной ткани картинки, которые вы найдете в этой статье. Прежде всего, дадим определение, которое необходимо при изучении данной темы.

Это особая группа и животных, основной функцией которой является ее сокращение, обусловливающее перемещение организма или составляющих его частей в пространстве. Данной функции соответствует строение основных элементов, из которых состоят различные виды мышечных тканей. Элементы эти имеют продольную и удлиненную ориентацию миофибрилл, включающих в свой состав - миозин и актин. Мышечная ткань, как и эпителиальная, это сборная тканевая группа, так как основные ее элементы развиваются из эмбриональных зачатков.

Сокращение мышечной ткани

Клетки ее, так же как и нервные, при воздействии электрических и химических импульсов могут возбуждаться. Способность их сокращаться (укорачиваться) в ответ на действие того или иного стимула связана с наличием миофибрилл, особых белковых структур, каждая из которых состоит из микрофиламентов, коротких белковых волокон. В свою очередь, они подразделяются на миозиновые (более толстые) и актиновые (тонкие) волокна. В ответ на нервное раздражение сокращаются различные виды мышечных тканей. Сокращение к мышце передается по нервному отростку через нейромедиатор, которым является ацетилхолин. Мышечные клетки в организме осуществляют энергосберегающие функции, так как расходуемая при сокращении различных мышц энергия выделяется затем в виде тепла. Именно поэтому, когда организм подвержен охлаждению, возникает дрожь. Это не что иное, как частые сокращения мышц.

Можно выделить следующие виды мышечных тканей, в зависимости от того, какое строение имеет сократительный аппарат: гладкую и поперечнополосатую. Они состоят из отличающихся по строению гистогенетических типов.

Мышечная ткань поперечнополосатая

Клетки миотомов, которые образуются из дорсальной мезодермы, являются источником ее развития. Эта ткань состоит из удлиненных имеющих вид цилиндров, концы которых заострены. 12 см в длину и 80 мкм в диаметре достигают эти образования. Симпласты (многоядерные образования) содержатся в центре мышечных волокон. Снаружи к ним прилегают клетки под названием "миосателлиты". Сарколеммой ограничены волокна. Она образуется плазмолеммой симпласт и базальной мембраной. Под базальной мембраной волокна располагаются миосателлиотоциты - так, что плазмолеммы симпласт касается их плазмолемма. Данные клетки являются камбиальным резервом мышечной скелетной ткани, и именно за счет него осуществляется регенерация волокон. Миосимпласты, кроме плазмолеммы, включают в себя также саркоплазму (цитоплазму) и расположенные по периферии многочисленные ядра.

Значение поперечнополосатой мышечной ткани

Описывая виды мышечной ткани, следует отметить, что поперечнополосатая является исполнительным аппаратом всей двигательной системы. Она формирует Кроме того, этот вид ткани входит в структуру внутренних органов, таких как глотка, язык, сердце, верхний отдел пищевода и др. Общая масса ее у взрослого человека составляет до 40% от массы тела, а у пожилых людей, а также новорожденных, ее доля - 20-30%.

Особенности поперечнополосатой мышечной ткани

Сокращение данного вида мышечной ткани, как правило, можно производить с участием сознания. Она обладает несколько большим быстродействием по сравнению с гладкой. Как вы видите, виды мышечной ткани отличаются (о гладкой мы поговорим совсем скоро и отметим некоторые другие различия между ними). В поперечнополосатых мышцах нервные окончания воспринимают информацию о текущем состоянии мышечной ткани, а затем передают ее по афферентным волокнам в нервные центры, ответственные за регуляцию двигательных систем. Управляющие сигналы поступают от регуляторов в виде нервных импульсов по двигательным или вегетативным эфферентным нервным волокнам.

Гладкая мышечная ткань

Продолжая описывать виды мышечных тканей человека, переходим к гладкой. Она формируется веретенообразными клетками, длина которых составляет от 15 до 500 мкм, а диаметр находится в промежутке от 2 до 10 мкм. В отличие от волокон мышцы поперечнополосатой, эти клетки имеют одно ядро. Кроме того, у них нет поперечной исчерченности.

Значение гладкой мышечной ткани

От сократительной функции этого вида мышечной ткани зависит функционирование всех систем организма, поскольку она входит в структуру каждой из них. Так, например, гладкая мышечная ткань участвует в управлении диаметром дыхательных путей, кровеносных сосудов, в сокращении матки, мочевого пузыря, в реализации двигательных функций нашего пищеварительного тракта. Она управляет диаметром зрачка глаз, а также участвует во множестве других функций различных систем организма.

Мышечные слои

Мышечные слои образует этот вид ткани в стенках лимфатических и кровеносных сосудов, а также всех полых органов. Обыкновенно это два или три слоя. Толстый циркулярный - наружный слой, средний присутствует не обязательно, тонкий продольный - внутренний. Питающие мышечную ткань кровеносные сосуды, а также нервы проходят параллельно оси мышечных клеток между их пучками. Гладкомышечные клетки можно разделить на 2 типа: унитарные (объединенные, сгруппированные) и автономные миоциты.

Автономные миоциты

Автономные функционируют довольно независимо друг от друга, так как нервным окончанием иннервируется каждая такая клетка. Они были обнаружены в мышечных слоях крупных кровеносных сосудов, а также в ресничной мышце глаза. Также к данному типу относятся клетки, из которых состоят мышцы, поднимающие волосы.

Унитарные миоциты

Унитарные мышечные клетки, напротив, тесно между собой переплетаются, так что мембраны их могут не просто примыкать плотно друг к другу, образуя десмосомы, но также и сливаться, формируя нексусы (щелевые контакты). Пучки образуются в результате данного объединения. Диаметр их составляет около 100 мкм, а длина достигает нескольких мм. Они формируют сеть, и в ее ячейки вплетаются Волокнами вегетативных нейронов иннервируются пучки, и они становятся функциональными единицами гладкой мышечной ткани. Деполяризация при возбуждении одной клетки пучка распространяется очень быстро на соседние, поскольку мало сопротивление щелевых контактов. Состоящие из унитарных клеток ткани есть в большинстве органов. К ним относятся мочеточники, матка, пищеварительный тракт.

Сокращение миоцитов

Сокращение миоцитов обусловлено в гладкой ткани, как и в поперечнополосатой, взаимодействием миозиновых и актиновых нитей. В этом схожи различные виды мышечной ткани у человека. Данные нити распределены внутри миоплазмы менее упорядоченно, чем в мышце поперечнополосатой. С этим связано отсутствие поперечной исчерченности в гладкой мышечной ткани. Внутриклеточный кальций является конечным исполнительным звеном, управляющим взаимодействием миозиновых и актиновых нитей (то есть сокращением миоцитов). Это же относится и к поперечнополосатой мышце. Однако детали механизма управления существенно отличаются от последней.

Проходящие в самой толще мышечной гладкой ткани вегетативные аксоны формируют не синапсы, что характерно для ткани поперечнополосатой, а многочисленные утолщения, имеющиеся по всей длине, которые и играют роль синапсов. Утолщения выделяют медиатор, который диффундирует к расположенным рядом миоцитам. Рецепторные молекулы находятся на поверхности этих миоцитов. С ними медиатор и взаимодействует. Он вызывает деполяризацию у миоцита внешней мембраны.

Особенности гладкой мышечной ткани

Нервная система, ее вегетативный отдел, управляется без участия сознания работой гладких мышц. Мышцы мочевого пузыря являются единственным исключением. Управляющие сигналы либо непосредственно реализуются, либо опосредованно - через гормональные (химические, гуморальные) воздействия.

Энергетические и механические свойства данного вида мышечной ткани обеспечивают поддержание тонуса (управляемого) стенок полых органов и сосудов. Связано это с тем, что гладкая ткань функционирует эффективно, не требуется больших затрат АТФ. У нее меньшее быстродействие, чем у мышечной ткани поперечнополосатой, однако она способна сокращаться более продолжительное время, кроме того, может развивать существенное напряжение и изменять в широких пределах свою длину.

Итак, мы рассмотрели виды мышечных тканей и особенности их структурной организации. Конечно, это лишь основная информация. Можно долго описывать виды мышечных тканей. Рисунки помогут вам наглядно их представить.



 

 

Это интересно: