→ Анаэробный ресинтез атф. Ресинтез атф при выполнении физических нагрузок. Биохимические сдвиги в крови

Анаэробный ресинтез атф. Ресинтез атф при выполнении физических нагрузок. Биохимические сдвиги в крови

АТФ и мышечная работа АТФ – непосредственный источник при мышечной работе. Скорость расходования АТФ очень высокая. Запасы АТФ невелики. Вся АТФ не может быть затрачена при работе. Выполнение значительного объема работы возможно только при ресинтезе АТФ с той же скоростью, с какой она тратиться.

ПУТИ РЕСИНТЕЗА АТФ Процессы, обеспечивающие ресинтез АТФ принято делить на аэробные и анаэробные. К важнейшим анаэробным процессам относятся: - креатинфосфатная реакция - гликолиз Есть и другие, но их вклад в энергообеспечение мышечной работы незначителен.

ПОКАЗАТЕЛИ МЕХАНИЗМОВ ЭНЕРГООБЕСПЕЧЕНИЯ Для сравнения различных механизмов, оценки их возможностей используются следующие показатели: - Максимальная мощность - Скорость развертывания - Емкость - Эффективность

ПОКАЗАТЕЛИ Мощность – максимальное количество энергии, которое тот или иной процесс может дать в единицу времени (максимальное количество АТФ, которое может быть ресинтезировано в единицу времени). Скорость развертывания – время от начала работы до достижения процессом максимальной мощности.

ПОКАЗАТЕЛИ ЕМКОСТЬ - общее количество энергии, которое может поставить процесс для обеспечения работы ЭФФЕКТИВНОСТЬ – отношение энергии, используемой для ресинтеза АТФ, к общему количеству освободившейся энергии.

АЭРОБНЫЙ РЕСИНТЕЗ АТФ (аэробное биологическое окисление) Биологическое окисление бывает аэробным и анаэробным. АЭРОБНОЕ ОКИСЛЕНИЕ – основной путь ресинтеза АТФ, непрерывно действующий на протяжении всей жизни. Суть процесса --------------------

АЭРОБНЫЙ РЕСИНТЕЗ АТФ (Аэробное окисление) Окисление в организме заключается в отщеплении от окисляемого вещества водорода – раздельно 2 -х протонов и 2 -х электронов. Водород отщепляется ферментами НАД и ФАД. Носителями энергии при этом являются электроны. Для организма важно: - эффективно использовать энергию электронов - не допустить значительного повышения температуры.

АЭРОБНОЕ ОКИСЛЕНИЕ При аэробном окислении конечным акцептором водорода является кислород. Чтобы решить указанные ранее задачи НАД не передает протоны и электроны сразу кислороду. Они проходят через цепь промежуточных переносчиков (дыхательную цепь).

ЭНЕРГЕТИЧЕСКИЙ ЭФФЕКТ Энергетический эффект окисления связан с переносом электронов. На каждом этапе переноса они теряют часть энергии. В трех пунктах переноса освобождаются более значительные порции энергии: НАД ФАД, b c 1, аа 3 кислород. В этих трех пунктах освобождается энергия, которая может быть использована организмом для выполнения какой-либо работы. Но не непосредственно, а через АТФ.

Роль АТФ АТФ является непосредственным источником энергии для живых организмов. При расщеплении АТФ освобождается энергия: АТФ -- АДФ + Н 3 РО 4 + Энергия Только энергия, освобождающаяся при расщеплении АТФ, может использоваться живыми организмами для выполнения всех видов работ.

ЭНЕРГЕТИЧЕСКИЙ ЭФФЕКТ 1 Освобождающаяся в этих трех пунктах энергия используется на ресинтез АТФ по уравнению: АДФ + фосфорная кислота + Эн. = АТФ На другие процессы эта энергия использоваться не может. Перенос по дыхательной цепи пары водородов обеспечивает ресинтез 3 -х молекул АТФ. На это используется почти 60% освобождающейся энергии Энергия, не используемая на синтез АТФ, освобождается в виде тепла.

ЭНЕРГЕТИЧЕСКИЙ ЭФФЕКТ 2 В обычных условиях этого тепла как раз хватает для поддержания температуры тела. То есть полезно используется практически вся энергия. Но за счет тепла работу выполнить нельзя. При работе, когда процессы окисления ускоряются, тепла освобождается много и включается терморегуляция.

ЭНЕРГЕТИЧЕСКИЙ ЭФФЕКТ 3 Имеются косвенные данные, свидетельствующие о том, что у спортсменов экстра класса, специализирующихся в аэробных видах спорта, эффективность аэробного окисления выше. Перенос одной пары водорода может обеспечить ресинтез не 3, а 4 -х молекул АТФ.

СКОРОСТЬ АЭРОБНОГО ОКИСЛЕНИЯ Скорость аэробного окисления зависит от потребности в энергии, а точнее от концентрации АДФ. Но иногда эта связь нарушается.

СВОБОДНОЕ ОКИСЛЕНИЕ Свободное окисление – когда освобождающаяся при переносе электронов энергия не используется на ресинтез АТФ, а освобождается в виде тепла. Вместо 3 -х молекул АТФ может ресинтезироваться 2, 1 или даже ни одной.

РОЛЬ СВОБОДНОГО ОКИСЛЕНИЯ Свободное окисление может включаться: - при холодовом воздействии на организм - при необходимости устранить из организма (путем расщепления) какието нежелательные для него вещества. - при неблагоприятных изменениях в организме, вызванных мышечной работой или другими причинами.

РОЛЬ СВОБОДНОГО ОКИСЛЕНИЯ 2 При закаливании вырабатывается способность легко включать свободное окисление, чтобы противодействовать холодовому воздействию. Под влиянием систематической тренировки в видах спорта с большими энерготратами связь между окислением и ресинтезом АТФ становится более прочной, чтобы не снижалась эффективность процессов аэробного окисления.

ЛОКАЛИЗАЦИЯ АЭРОБНОГО ОКИСЛЕНИЯ Процесс аэробного окисления происходит внутри клеток в митохондриях. Количество митохондрий под влиянием систематической тренировки может увеличиваться.

Достоинства и недостатки аэробного ресинтеза АТФ ДОСТОИНСТВА: Наличие большого количества субстратов окисления (углеводы, жиры, белки). Удобные конечные продукты (СО 2 и Н 2 О), которые легко устраняются из организма. Высокая энергетическая эффективность: почти 60% освобождающейся энергии используется полезно на ресинтез АТФ.

НЕДОСТАТКИ 2 Низкая скорость развертывания и ограниченная мощность. Оба указанных недостатка аэробного пути ресинтеза АТФ связаны с возможностями потребления, транспорта и использования кислорода.

СКОРОСТЬ АЭРОБНЫХ ПРЕВРАЩЕНИЙ ЗАВИСИТ: - от потребности в энергии - от количества и активности ферментов от наличия субстратов окисления От поставки кислорода

ПОСТАВКА КИСЛОРОДА Возможности организма по доставке кислорода к работающим тканям и органам является главным фактором, ограничивающим аэробное энергообеспечение. Доставка кислорода к местам использования обеспечивается деятельностью дыхательной и ССС, системой крови. К доставке кислорода имеет отношение гемоглобин крови и миоглобин, содержащийся в тканях.

ВЛИЯНИЕ ТРЕНИРОВКИ Все органы и системы, обеспечивающие потребление, транспорт и использование кислорода подвержены влиянию тренировки – происходит их совершенствование. Это проявляется в повышении максимальной мощности аэробного пути ресинтеза АТФ. Скорость развертывания менее значимый показатель.

МАКСИМАЛЬНОЕ ПОТРЕБЛЕНИЕ КИСЛОРОДА (МПК) В качестве показателя уровня развития аэробного пути ресинтеза АТФ используется максимальное потребление кислорода – максимальное количество кислорода, которое может потребить и использовать тот или иной человек в единицу времени при выполнении интенсивной работы.

МПК Различают абсолютные и относительные значения МПК. В состоянии покоя потребление О 2 составляет 0, 3 -0, 4 л/мин. При выполнении интенсивной работы МПК увеличивается и может достигать 3 -4 -5 л/мин. Это абсолютные значения МПК.

ОТНОСИТЕЛЬНЫЕ ЗНАЧЕНИЯ МПК Если два человека имеют одинаковые значения МПК, на разную массу тела, у кого выше аэробные возможности? У того, у кого меньше масса тела. Поэтому более информативны относительные значения МПК – когда количество потребляемого кислорода (в мл) делится на массу тела (в кг).

ОТНОСИТЕЛЬНЫЕ ЗНАЧЕНИЯ МПК 2 Относительные значения МПК варьируют у разных людей (в зависимости от возраста, пола, состояния здоровья, уровня тренированности, спортивной специализации) от 20 до 85 мл/кг/мин и более.

ОТНОСИТЕЛЬНЫЕ ЗНАЧЕНИЯ МПК 3 Можно сказать, что емкость аэробного пути ресинтеза АТФ – безгранична. Работает на протяжении всей жизни без остановки. Но интересно не это, а сколько времени аэробный процесс может работать с максимальной или около максимальной мощностью.

УСЛОВИЯ ДОСТИЖЕНИЯ МПК МПК достигается при ЧСС 180190 уд/мин. При этих значениях ЧСС достигается максимальная сердечная производительность. Продолжительность работы должна быть не менее 2 минут.

ЕМКОСТЬ АЭРОБНОГО ПУТИ 2 Нетренированный человек на уровне МПК может работать 6 -8 минут. Спортсмен экстра класса представитель аэробных видов спорта – 30 -35 минут.

РОЛЬ АЭРОБНОГО ПУТИ ПРИ РАБОТЕ Основной механизм энергообеспечения при любой достаточно продолжительной работе. «Фоновый» механизм при работе переменной интенсивности. Обеспечивает энергией все восстановительные процессы.

АНАЭРОБНЫЕ ПУТИ РЕСИНТЕЗА АТФ Анаэробные процессы компенсируют недостатки аэробного: обладают высокой скоростью развертывания и высокой мощностью. Но имеют небольшую емкость. Они работают подобно аккумуляторам: «заряжаются» за счет аэробного процесса и в нужный момент отдают энергию.

Креатинфосфатный путь ресинтеза АТФ В клетках организма, кроме АТФ, имеется еще одно вещество с богатой энергией химической связью – креатинфосфат (Кр. Ф). Креатинфосфат может вступать в реакцию с АДФ: Кр. Ф + АДФ Кр + АТФ Этот механизм энергообеспечения называют также алактатным анаэробным

КРЕАТИНФОСФАТНАЯ РЕАКЦИЯ Это очень простой по химической природе механизм – всего одна реакция. Кр. Ф находится в клетке рядом с местами образования АДФ при работе. Благодаря этому креатинфосфатная реакция обладает уникальными характеристиками.

ВОЗМОЖНОСТИ Кр. Ф-реакции У нее наибольшая скорость развертывания: максимальной мощности достигает через 1 -3 секунды после начала интенсивной работы. Наибольшая мощность: максимальная мощность Кр. Ф -реакции в 3 -4 раза выше максимальной мощности аэробного пути ресинтеза АТФ и в 1, 5 -2 раза выше максимальной мощности гликолиза. Благодаря своим кникальным характеристикам креатинфосфатная реакция лежит в основе скоростно-силовых качеств. Главным недостатком является ограниченная емкость, зависящая от содержания креатинфосфатата.

ЕМКОСТЬ Кр. Ф-реакции Работать с максимальной интенсивностью можно 6 -8 секунд. Через 6 -8 секунд Кр. Ф снижается настолько, что скорость реакции замедляется и снижается интенсивность работы. Хорошо тренированные спортсмены (спринтеры) могут работать за счет этой реакции более продолжительное время. Время работы с максимальной интенсивностью используется для оценки емкости Кр. Ф – реакции.

ВЛИЯНИЕ ТРЕНИРОВКИ Под влиянием целенаправленной тренировки повышается скорость развертывания, мощность и емкость Кр. Ф – реакции. Особенно значительно можно повысить емкость. В основе этого лежит увеличение Кр. Ф, которое может повыситься в 1, 5 -2 раза.

РОЛЬ ПРИ МЫШЕЧНОЙ ДЕЯТЕЛЬНОСТИ Основной механизм энергообеспечения в упражнениях максимальной и близкой к максимальной мощности (спринтерский бег, упражнения со штангой). Обеспечивает энергией резкие изменения мощности по ходу работы.

ВОССТАНОВЛЕНИЕ КРЕАТИНФОСФАТА После завершения интенсивной работы запасы Кр. Ф восстанавливаются. Это происходит по уравнению: Кр + АТФ Кр. Ф + АДФ АТФ, используемая для ресинтеза Кр. Ф, образуется в ходе процессов аэробного окисления, для обеспечения которых требуется дополнительное количество кислорода. Запасы Кр. Ф могут восстановиться за 2 -5 минут. При значительном снижении их содержания – за более продолжительное время.

Кислородный долг Излишек кислорода, потребляемый в период восстановления после интенсивной работы сверх уровня покоя.

ГЛИКОЛИЗ Анаэробное расщепление гликогена или глюкозы до образования молочной кислоты (МК). За счет освобождающейся энергии ресинтезируется АТФ. Расщепление до молочной кислоты 1 молекулы глюкозы обеспечивает ресинтез 2 молекул АТФ, 1 глюкозного остатка гликогена – 3 молекул АТФ.

ГЛИКОЛИЗ Гликолиз по своим возможностям занимает промежуточное положение между Кр. Фреакцией и аэробным ресинтезом АТФ. Скорость развертывания гликолиза – 20 -40 секунд Мощность: в 1, 5 -2 раза выше максимальной мощности аэробного окисления и в 1, 5 -2 раза ниже мощности Кр. Ф-реакции. Оценить емкость гликолиза сложно, так как он один не может участвовать в энергообеспечении работы. По косвенным данным – гликолиз может дать в 5 -7 раз больше энергии, чем Кр. Ф-реакция.

ЕМКОСТЬ ГЛИКОЛИЗА Емкость гликолиза зависит: - от содержания гликогена в быстрых мышечных волокнах. - от устойчивости ферментов (и не только ферментов) к наполнению молочной кислоты и изменению р. Н - от емкости буферных систем - от волевых качеств.

РОЛЬ ГЛИКОЛИЗА Важнейший механизм энергообеспечения в упражнениях субмаксимальной мощности. Это упражнения продолжительностью от 30 до 3 -4 минут, при условии, что человек за все время выкладывается полностью. Участвует в энергообеспечении более кратковременных и продолжительных упражнений. Участвует в энергообеспечении упражнений, где присутствует статический режим деятельности мышц. Участвует в энергообеспечении повседневной деятельности.

ВЛИЯНИЕ МОЛОЧНОЙ КИСЛОТЫ НА ОРГАНИЗМ Сдвигает р. Н в кислую сторону. Из-за сдвига р. Н: - падает активность ферментов - изменяются свойства многих белков (в том числе сократительных). Вызывает осмотические явления – переход воды внутрь мышечных волокон. Происходит чрезмерное усиление дыхания, что требует дополнительных затрат энергии.

УСТРАНЕНИЕ МОЛОЧНОЙ КИСЛОТЫ Молочная кислота практически не устраняется в тех волокнах, где образуется, а поступает в кровь. Два основных пути: - использование в качества источника энергии (сердце и другие ткани) - ресинтез в гликоген (в печени). Ресинтез гликогена из молочной кислоты требует затрат энергии (в виде АТФ). Для ресинтеза этого АТФ требуется дополнительное количество кислорода. Этот кислород также включается в кислородный долг.

МИОКИНАЗНАЯ РЕАКЦИЯ АДФ + АДФ АТФ + АМФ Этот механизм называют реакцией крайней помощи. Может использоваться в самых крайних случаях. Емкость незначительна. Проявляет себя при необходимости устранить излишки АТФ и на начальных этапах мышечной работы. АМФ – стимулятор аэробного окисления.

При любой мышечной работе функционируют все три пути ресинтеза АТФ, но включаются они последовательно. В первые секунды работы ресинтез АТФ идет за счет креатинфосфатной реакции, затем включается гликолиз и, наконец, по мере продолжения работы на смену гликолизу приходит тканевое дыхание (рис.19). . Из рисунка видно, что переход энергообеспечения мышечной деятельности с анаэробных путей на аэробный ведет к уменьшению суммарной выработки АТФ за единицу времени, что находит отражение в снижении мощности выполняемой работы.


Рис. 19. Включение путей ресинтеза АТФ при выполнении физической работы

Конкретный вклад каждого из механизмов образования АТФ в энергообеспечение мышечных движений зависит от интенсивности и продолжительности физических нагрузок.

При кратковременной, но очень интенсивной работе (например, бег на 100 м) главным источником АТФ является креатинкиназная реакция. При более продолжительной интенсивной работе (например, бег на средние дистанции) бóльшая часть АТФ образуется гликолитическим путем. При выполнении упражнений большой продолжительности, но умеренной мощности энергообеспечение мышц осуществляется, в основном, за счет аэробного окисления.

15.5. Зоны относительной мощности мышечной работы

В настоящее время приняты различные классификации мощности мышечной деятельности. Одна из них - классификация по В.С.Фарфелю, базирующаяся на положении о том, что мощность выполняемой физической нагрузки обусловлена соотношением между тремя основными путями ресинтеза АТФ, функционирующими в мышцах во время работы. Согласно этой классификации выделяют четыре зоны относительной мощности мышечной работы: максимальной, субмаксимальной, большой и умеренной мощности.

Работа в зоне максимальной мощности может продолжаться в течение 15-20 с. Основной источник АТФ в этих условиях - креатинфосфат. Только в конце работы креатинфосфатная реакция замещается гликолизом. Примером физических упражнений, выполняемых в зоне максимальной мощности, является бег на короткие дистанции, прыжки в длину и высоту, некоторые гимнастические упражнения, подъём штанги и др.

Работа в зоне субмаксимальной мощности имеет продолжительность до 5 мин. Ведущий механизм ресинтеза АТФ - гликолитический. В начале работы, пока гликолиз не достиг максимальной скорости, образование АТФ идет за счет креатинфосфата, а в конце работы гликолиз начинает заменяться тканевым дыханием. Работа в зоне субмаксимальной мощности характеризуется самым высоким кислородным долгом - до 20-22 л. Примером физических нагрузок в этой зоне мощности является бег на средние дистанции, плавание на короткие дистанции, велосипедные гонки на треке, бег на коньках на спринтерские дистанции и др.

Работа в зоне большой мощности имеет предельную продолжительность 30 мин. Для работы в этой зоне характерен примерно одинаковый вклад гликолиза и тканевого дыхания. Креатинфосфатный путь ресинтеза АТФ функционирует только в самом начале работы и поэтому его доля в общем энергообеспечении данной работы мала. Примером упражнений в этой зоне мощности является бег на 5000 м, бег на коньках на стайерские дистанции, лыжные гонки по пересеченной местности, плавание на средние и длинные дистанции и др.

Работа в зоне умеренной мощности продолжается свыше 30 мин. Энергообеспечение мышечной деятельности происходит преимущественно аэробным путем. Примером работы такой мощности является марафонский бег, легкоатлетический кросс, спортивная ходьба, шоссейные велогонки, лыжные гонки на длинные дистанции, турпоходы и др.

В ациклических и ситуационных видах спорта (единоборства, гимнастические упражнения, спортивные игры) мощность выполняемой работы многократно изменяется. Так, у футболиста бег с умеренной скоростью (зона большой мощности) чередуется с бегом на короткие дистанции со спринтерской скоростью (зона максимальной или субмаксимальной мощности) ; можно найти и такие отрезки игры, когда мощность работы значительно снижается (зона умеренной мощности). Такие примеры можно привести в отношении многих других видов спорта.

Аэробный путь ресинтеза АТФ - это основной, базовый способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнимаются два атома водорода и по дыхательной цепи передаются на молекулярный кислород - 02, доставляемый кровью в мышцы из воздуха, в результате чего возникает вода. За счет энергии, выделяющейся при образовании воды, происходит синтез АТФ из АДФ и фосфорной кислоты. Обычно на каждую образовавшуюся молекулу воды приходится синтез трех молекул АТФ.

В упрощенном виде ресинтез АТФ аэробным путем может быть представлен схемой:

Чаще всего водород отнимается от промежуточных продуктов цикла трикарбоновых кислот - цикла Кребса. Цикл Кребса - это завершающий этап катаболизма, в ходе которого происходит окисление ацетилкофермента А до С02 и Н20. В ходе этого процесса от перечисленных выше кислот отнимается 4 пары атомов водорода и поэтому образуется 12 молекул АТФ при окислении одной молекулы ацетилкофермента А.

В свою очередь, ацетил-КоА может образовываться из углеводов, жиров и аминокислот, т.е. через ацетил-КоА в цикл Кребса вовлекаются углеводы, жиры и аминокислоты:

Скорость аэробного пути ресинтеза АТФ контролируется содержанием в мышечных клетках АДФ, который является активатором ферментов тканевого дыхания. В состоянии покоя, когда в клетках почти нет АДФ, тканевое дыхание протекает с очень низкой скоростью. При мышечной работе за счет интенсивного использования АТФ происходит образование и накопление АДФ. Появившийся избыток АДФ ускоряет тканевое дыхание, и оно может достигнуть максимальной интенсивности.

Другим активатором аэробного пути ресинтеза АТФ является С02. Возникающий при физической работе в избытке углекислый газ активирует дыхательный центр мозга, что в итоге приводит к повышению скорости кровообращения и улучшению снабжения мышц кислородом.

Аэробный путь образования АТФ характеризуется следующими критериями.

Максимальная мощность составляет 350-450 кал/мин-кг. По сравнению с анаэробными путями ресинтеза АТФ тканевое дыхание обладает самой низкой величиной максимальной мощности. Это обусловлено тем, что возможности аэробного процесса ограничены доставкой кислорода в митохондрии и их количеством в мышечных клетках. Поэтому за счет аэробного пути ресинтеза АТФ возможно выполнение физических нагрузок только умеренной мощности.

Время развертывания - 3-4 мин. Такое большое время развертывания объясняется тем, что для обеспечения максимальной скорости тканевого дыхания необходима перестройка всех систем организма, участвующих в доставке кислорода в митохондрии мышц.

Время работы с максимальной мощностью составляет десятки минут. Как уже указывалось, источниками энергии для аэробного ресинтеза АТФ являются углеводы, жиры и аминокислоты, распад которых завершается циклом Кребса. Причем для этой цели используются не только внутримышечные запасы данных веществ, но и углеводы, жиры, кетоновые тела и аминокислоты, доставляемые кровью в мышцы во время физической работы. В связи с этим данный путь ресинтеза АТФ функционирует с максимальной мощностью в течение такого продолжительного времени.

По сравнению с другими идущими в мышечных клетках процессами ресинтеза АТФ аэробный ресинтез имеет ряд преимуществ. Он отличается высокой экономичностью: в ходе этого процесса идет глубокий распад окисляемых веществ до конечных продуктов - С02 и Н20 и поэтому выделяется большое количество энергии. Так, например, при аэробном окислении мышечного гликогена образуется 39 молекул АТФ в расчете на каждую отщепляемую от гликогена молекулу глюкозы, в то время как при анаэробном распаде этого углевода синтезируется только 3 молекулы АТФ в расчете на одну молекулу глюкозы. Другим достоинством этого пути ресинтеза является универсальность в использовании субстратов. В ходе аэробного ресинтеза АТФ окисляются все основные органические вещества организма: аминокислоты, углеводы, жирные кислоты, кетоновые тела и др. Еще одним преимуществом этого способа образования АТФ является очень большая продолжительность его работы: практически он функционирует постоянно в течение всей жизни. В покое скорость аэробного ресинтеза АТФ низкая, при физических нагрузках его мощность может стать максимальной.

Однако аэробный способ образования АТФ имеет и ряд недостатков. Так, действие этого способа связано с обязательным потреблением кислорода, доставка которого в мышцы обеспечивается дыхательной и сердечнососудистой системами. Функциональное состояние кардиореспираторной системы является лимитирующим фактором, ограничивающим продолжительность работы аэробного пути ресинтеза АТф с максимальной мощностью и величину самой максимальной мощности.

Возможности аэробного пути ограничены еще и тем, что все ферменты тканевого дыхания встроены во внутреннюю мембрану митохондрий в форме дыхательных ансамблей и функционируют только ffPH наличии неповрежденной мембраны. Любые факторы, влияющие На состояние и свойства мембран, нарушают образование АТФ аэробным способом. Например, нарушения окислительного фосфорилирования наблюдаются при ацидозе, набухании митохондрий, при развитии в мышечных клетках процессов свободно-радикального окисления липидов, входящих в состав мембран митохондрий.

Еще одним недостатком аэробного образования АТФ можно считать большое время развертывания и небольшую по абсолютной величине максимальную мощность. Поэтому мышечная деятельность, свойственная большинству видов спорта, не может быть полностью обеспечена этим путем ресинтеза АТФ и мышцы вынуждены дополнительно включать анаэробные способы образования АТФ, имеющие более короткое время развертывания и большую максимальную мощность.

В спортивной практике для оценки аэробного фосфорилирования часто используют три показателя: максимальное потребление кислорода, порог анаэробного обмена и кислородный приход.

МПК - это максимально возможная скорость потребления кислорода организмом при выполнении физической работы. Этот показатель характеризует максимальную мощность аэробного пути ресинтеза АТФ: чем выше величина МПК, тем больше значение максимальной скорости тканевого дыхания, это обусловлено тем, что практически весь поступающий в организм кислород используется в этом процессе. МПК представляет собой интегральный показатель, зависящий от многих факторов: от функционального состояния кардиореспираторной системы, от содержания в крови гемоглобина, а в мышцах - миоглобина, от количества и размера митохондрий. У нетренированных молодых людей МПК обычно равно 3-4 л/мин, у спортсменов высокого класса, выполняющих аэробные нагрузки, МПК - 6-7 л/мин. На практике, для исключения влияния на эту величину массы тела МПК рассчитывают на кг массы тела. В этом случае у молодых людей, не занимающихся спортом, МПК равно 40-50 мл/мин-кг, а у хорошо тренированных спортсменов - 80-90 мл/мин-кг.

В спортивной практике МПК также используется для характеристики относительной мощности аэробной работы, которая выражается потреблением кислорода в процентах от МПК. Например, относительная мощность работы, выполняемой с потреблением кислорода 3 л/мин спортсменом, имеющим МПК, равное 6 л/мин, будет составлять 50% от уровня МПК. ПАНО - это минимальная относительная мощность работы, измеренная по потреблению кислорода в процентах по отношению к МПК, при которой начинает включаться гликолитический путь ресинтеза АТФ. у нетренированных ПАНО составляет 40-50% от МПК, а у спортсменов ПАНО может достигать 70% от МПК. Более высокие величины ПАНО у тренированных объясняются тем, что аэробное фосфорилирование у них дает больше АТФ в единицу времени, и поэтому анаэробный путь образования АТФ - гликолиз - включается при больших нагрузках. Кислородный приход - это количество кислорода, использованное во время выполнения данной нагрузки для обеспечения аэробного ресинтеза АТФ. Кислородный приход характеризует вклад тканевого дыхания в энергообеспечение проделанной работы.

Под влиянием систематических тренировок, направленных на развитие аэробной работоспособности, в миоцитах возрастает количество митохондрий, увеличивается их размер, в них становится больше ферментов тканевого дыхания. Одновременно происходит совершенствование кислородтранспортной функции: повышается содержание миоглобина в мышечных клетках и гемоглобина в крови, возрастает работоспособность дыхательной и сердечнососудистой систем организма.

Длительное время этот путь образования АТФ рассматривался как аварийный механизм, обеспечивающий синтез АТФ в условиях, когда другие способы получения АТФ становятся неэффективными. Кроме того, считалось, что аденилаткиназная реакция ведет к уменьшению в миоцитах общего количества адениловых нуклеотидов, так как образующийся в этой реакции АМФ может дезаминироваться и превращаться в инозиновую кислоту:

Однако в настоящее время этой реакции отводят не энергетическую, а регуляторную роль. Это связано с тем, что АМФ является мощным активатором ферментов распада углеводов - фосфорилазы и фосфофруктокиназы, участвующих как в анаэробном расщеплении гликогена и глюкозы до молочной кислоты, так и в их аэробном окислении до воды и углекислого газа. Оказалось также, что превращение АМФ в инозиновую кислоту имеет положительное значение для мышечной деятельности. Образующийся в результате дезаминирования аммиак может нейтрализовать молочную кислоту и тем самым предупреждать наступление изменений в миоцитах, связанных с ее накоплением. При этом общее содержание адениловых нуклеотидов в клетках не изменяется, так как инозиновая кислота при взаимодействии с одной из аминокислот - аспарагиновой кислотой снова превращается в АМФ.

В табл. приведены величины критериев описанных выше путей Ресинтеза АТФ. Количественные критерии основных путей ресинтеза АТФ:

Соотношение между различными путями ресинтеза АТФ при мышечной работе

При любой мышечной работе функционируют все три пути ресинтеза АТФ, но включаются они последовательно. В первые секунды работы ресинтез АТФ идет за счет креатинфосфатной реакции, затем включается гликолиз и, наконец, по мере продолжения работы на смену гликолизу приходит тканевое дыхание.

Включение путей ресинтеза АТФ при выполнении физической работы

Из рисунка видно, что переход энергообеспечения мышечной деятельности с анаэробных путей на аэробный ведет к уменьшению суммарной выработки АТФ за единицу времени, что находит отражение в снижении мощности выполняемой работы.

Конкретный вклад каждого из механизмов образования АТФ в энергообеспечение мышечных движений зависит от интенсивности и продолжительности физических нагрузок.

При кратковременной, но очень интенсивной работе главным источником АТФ является креатинкиназная реакция, при более продолжительной интенсивной работе большая часть АТФ образуется гликолитическим путем. При выполнении упражнений большой продолжительности, но умеренной мощности энергообеспечение мышц осуществляется в основном за счет аэробного окисления.

Анаэробные пути ресинтеза АТФ – это дополнительные пути. Таких путей два креатинфосфатный путь и лактатный.
Креатинфосфатный путь связан с веществом креатинфосфатом. Креатинфосфат состоит из вещества креатина, которое связывается с фосфатной группой макроэргической связью. Креатинфосфата в мышечных клетках содержится в покое 15 – 20 ммоль/кг.
Креатинфосфат обладает большим запасом энергии и высоким сродством с АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате реакции гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ.

Креатинфосфат + АДФ → креатин + АТФ.

Эта реакция катализируется ферментом креатинкиназой. Данный путь ресинтеза АТФ иногда называют креатикиназным.
Креатинкиназная реакция обратима, но смещена в сторону образования АТФ. Поэтому она начинает осуществляться, как только в мышцах появляются первые молекулы АДФ.
Креатинфосфат – вещество непрочное. Образование из него креатина происходит без участия ферментов. Не используемый организмом креатин, выводится из организма с мочой. Синтез креатинфосфата происходит во время отдыха из избытка АТФ. При мышечной работе умеренной мощности запасы креатинфосфата могут частично восстанавливаться. Запасы АТФ и креатинфосфата в мышцах называют также фосфагены.
Максимальная мощность этого пути составляет 900 -1100 кал/ мин-кг, что в три раза выше соответствующего показателя аэробного пути.
Время развертывания всего 1 – 2 сек.
Время работы с максимальной скоростью всего лишь 8 – 10 сек.

Главным преимуществом креатинфосфатного пути образования АТФ являются

· небольшое время развертывания,
· высокая мощность.

Эта реакция является главным источником энергии для упражнений максимальной мощности: бег на короткие дистанции, прыжки метания, подъем штанги. Эта реакция может неоднократно включаться во время выполнения физических упражнений, что делает возможным быстрое повышение мощности выполняемой работы.

Биохимическая оценка состояния этого пути ресинтеза АТФ обычно проводится двумя показателями: креатиновому коэффициенту и алактатному долгу.

Креатиновый коэффициент – это выделение креатина в сутки. Этот показатель характеризует запасы креатинфосфата в организме.

Алактатный кислородный долг – это повышение потребления кислорода в ближайшие 4 – 5 мин, после выполнения кратковременного упражнения максимальной мощности. Этот избыток кислорода требуется для обеспечения высокой скорости тканевого дыхания сразу после окончания нагрузки для создания в мышечных клетках повышенной концентрации АТФ. У высококвалифицированных спортсменов значение алактатного долга после выполнения нагрузок максимальной мощности составляет 8 – 10 л.

Гликолитический путь ресинтеза АТФ, так же как креатинфосфатный является анаэробным путем. Источником энергии, необходимой для ресинтеза АТФ в данном случае является мышечный гликоген. При анаэробном распаде гликогена от его молекулы под действием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюезо-1-фосфата после ряда последовательных реакций превращаются в молочную кислоту. Этот процесс называется гликолиз. В результате гликолиза образуются промежуточные продукты, содержащие фосфатные группы, соединенные макроэргическими связями. Эта связь легко переносится на АДФ с образованием АТФ. В покое реакции гликолиза протекают медленно, но при мышечной работе его скорость может возрасти в 2000 раз, причем уже в предстартовом состоянии.

Максимальная мощность – 750 – 850 кал/мин-кг, что в два раза выше, чем при тканевом дыхании. Такая высокая мощность объясняется содержанием в клетках большого запаса гликогена и наличием механизма активизации ключевых ферментов.
Время развертывания 20-30 секунд.
Время работы с максимальной мощностью – 2 -3 минуты.

Гликолитический способ образования АТФ имеет ряд преимуществ перед аэробным путем:

· он быстрее выходит на максимальную мощность,
· имеет более высокую величину максимальной мощности,
· не требует участия митохондрий и кислорода.

Однако у этого пути есть и свои недостатки:
- процесс малоэкономичен,
- накопление молочной кислоты в мышцах существенно нарушает их нормальное функционирование и способствует утомлению мышцы.

Для оценки гликолиза используют две биохимические методики – измерение концентрации лактата в крови, измерение водородного показателя крови и определение щелочного резерва крови.
Определяют также и содержание лактата в моче. Это дает информацию о суммарном вкладе гликолиза в обеспечение энергией упражнений, выполненных за время тренировки.
Еще одним важным показателем является лактатный кислородный долг. Лактатный кислородный долг – это повышенное потребление кислорода в ближайшие 1 – 1,5 часа после окончания мышечной работы. Этот избыток кислорода необходим для устранения молочной кислоты, образовавшейся при выполнении мышечной работы. У хорошо тренированных спортсменов кислородный долг составляет 20 – 22 л. По величине лактаного долга судят о возможностях данного спортсмена при нагрузках субмаксимальной мощности.

Аэробный путь ресинтеза АТФ иначе называется тканевым дыханием – это основной способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнимаются два атома водорода и по дыхательной цепи передаются на молекулярный кислород, доставляемый в мышцы кровью, в результате чего возникает вода. За счет энергии, выделяющейся при образовании воды, происходит синтез молекул АТФ из АДФ и фосфорной кислоты. Обычно на каждую образовавшуюся молекулу воды приходится синтез трех молекул АТФ.

Чаще всего водород отнимается от промежуточных продуктов цикла трикарбоновых кислот (ЦТК). ЦТК – это завершающий этап катаболизма в ходе которого происходит окисление ацетилкофермента А до углекислого газа и воды. В ходе этого процесса от перечисленных выше кислот отнимается четыре пары атомов водорода и поэтому образуется 12 молекул АТФ при окислении одной молекулы ацетилкофермента А.

В свою очередь ацетилкофермент А может образовываться из углеводов, жиров аминокислот, то есть через это соединение в ЦТК вовлекаются углеводы, жиры и аминокислоты.

Скорость аэробного обмена АТФ контролируется содержанием в мышечных клетках AДФ, который является активатором ферментов тканевого дыхания. При мышечной работе происходит накопление AДФ. Избыток AДФ ускоряет тканевое дыхание, и оно может достигнуть максимальной интенсивности.

Другим активатором ресинтеза АТФ является углекислый газ. Избыток этого газа в крови активирует дыхательный центр головного мозга, что в итоге приводит к повышению скорости кровообращения и улучшению снабжения мышцы кислородом.
Максимальная мощность аэробного пути составляет 350 -450 кал/мин-кг. По сравнению с анаэробными путями ресинтеза АТФ тканевое дыхание облает более низкими показателями, что ограничено скоростью доставки кислорода в мышцы. Поэтому за счет аэробной пути ресинтеза АТФ могут осуществляться только физические нагрузки умеренной мощности.

Время развертывания составляет 3 – 4 минуты, но у хорошо тренированных спортсменов может составлять 1 мин. Это связано с тем, что на доставку кислорода в митохондрии требуется перестройка практически всех систем организма.

Время работы с максимальной мощностью составляет десятки минут. Это дает возможность использовать данный путь при длительной работе мышц.

По сравнению с другими идущими в мышечных клетках процессами ресинтеза АТФ аэробный путь имеет ряд преимуществ.
1. Экономичность: из одной молекулы гликогена образуется 39 молекул АТФ, при анаэробном гликолизе только 3 молекулы.
2. Универсальность в качестве начальных субстратов здесь выступают разнообразные вещества: углеводы, жирные кислоты, кетоновые тела, аминокислоты.
3. Очень большая продолжительность работы. В покое скорость аэробного ресинтеза АТФ может быть небольшой, но при физических нагрузках она может стать максимальной.

Однако есть и недостатки.
1. Обязательное потребление кислорода, что ограничено скоростью доставки кислорода в мышцы и скоростью проникновения кислорода через мембрану митохондрий.
2. Большое время развертывания.
3. Небольшую по максимальной величине мощность.

Поэтому мышечная деятельность, свойственная большинству видов спорта, не может быть полностью получена этим путем ресинтеза АТФ.
В спортивной практике для оценки аэробного ресинтеза используются следующие показатели: максимальное потребление кислорода (МПК), порог аэробного обмена (ПАО), порог анаэробного обмена (ПАНО) и кислородный приход.

МПК – это максимально возможная скорость потребления кислорода организмом при выполнение физической работы. Чем выше МПК, тем выше скорость тканевого дыхания. Чем тренированнее человек, тем выше МПК. МПК рассчитывают обычно на 1кг массы тела. У людей, не занимающихся спортом МПК 50 мл/мин-кг, а у тренированных людей он достигает 90 мл/мин-кг.

В спортивной практике МПК также используется для характеристики относительной мощности аэробной работы, которая выражается в процентах от МПК. Например, относительная мощность работы, выполняемая с потреблением кислорода 3 л/мин спортсменом, имеющим МПК 6 л/мин, будет составлять 50% от уровня МПК.

ПАО – это наибольшая относительная мощность работы, измеряемая по потреблению кислорода в процентах по отношению к МПК. Большие величины ПАО говорят о лучшем развитии аэробного ресинтеза.

ПАНО – это минимальная относительная мощность работы, также измеренная по потреблению кислорода в процентах по отношению к МПК. Высокое ПАНО говорит о том, что аэробный ресинтез выше в единицу времени, поэтому гликолиз включается при гораздо больших нагрузках.

Кислородный приход – это количество кислорода (сверх дорабочего уровня), использованное во время выполнения данной нагрузки для обеспечения аэробного ресинтеза АТФ. Кислородный приход характеризует вклад тканевого дыхания в энергообеспечение всей проделанной работы. Кислородный приход часто используют для оценки всей проделанной аэробной работы. Под влиянием систематических тренировок в мышечных клетках возрастает количество митохондрий, совершенствуется кислородно-транспортная функция организма, возрастет количество миоглобина в мышцах и гемоглобина в крови.



 

 

Это интересно: