→ Что такое условие плавания тел. Плавание тел: условия плавания. Плавание тел на поверхности жидкости

Что такое условие плавания тел. Плавание тел: условия плавания. Плавание тел на поверхности жидкости

Разработки уроков (конспекты уроков)

Линия УМК А. В. Перышкина. Физика (7-9)

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

Тема урока: Условия плавания тел.

Цели урока:

  • Образовательные: научить анализировать, выделять (главное, существенное),
  • приблизить к самостоятельному решению проблемных ситуаций.
  • Развивающие: развивать интерес к конкретной деятельности на уроке,
  • формировать умение сравнивать, классифицировать, обобщать факты и понятия.
  • Воспитательные: создать атмосферу коллективного поиска, эмоциональной приподнятости, радости познания, радости преодоления трудностей.

Место урока в разделе: "Давление твердых тел, жидкостей и газов", после изучения темы "Давление жидкости и газа на погруженное в них тело. Архимедова сила".

Тип урока: Урок повторения предметных знаний.

Основные термины и понятия: масса, объём, плотность вещества, вес тела, сила тяжести, архимедова сила.

Межпредметные связи: математика

Наглядность: демонстрация поведения разных тел, погруженных в воду; условия плавания тела в зависимости от плотности.

Оборудование:

а) для демонстрации

  • пластиковая банка c водой, три предмета на нити: алюминиевый цилиндр, пластиковый шарик, герметически закрытый пузырёк с водой (заранее приготовленный учителем), который может находиться в равновесии в любом месте жидкости;
  • ванночка c водой, пластина алюминиевой фольги, пассатижи.

б) для фронтальной работы

  • Весы с разновесами, измерительный цилиндр (мензурка), капсула-поплавок с крышкой (по 3), сухой песок, нитки, фильтровальная бумага, изолента, инструкции по выполнению заданий фронтального эксперимента, тетради для лабораторных работ.

Формы работы на уроке: фронтальная в парах, индивидуальная.

План урока

  1. Организационный момент;
  2. Первичная проверка понимания изученного ранее материала;
  3. Практическая работа по проверке полученных выводов;
  4. Рефлексия;
  5. Домашнее задание.

Ход занятия

I. Организационный момент

Сегодня на уроке мы продолжим изучение поведения тел, погруженных в воду. Посмотрим несколько опытов, часть опытов вы будете проводить самостоятельно c выполнением некоторых расчетов.

II. Первичная проверка понимания изученного ранее материала

Опыт 1

Опускаем в воду последовательно алюминиевый цилиндр, шарик и пузырёк с водой. Наблюдаем поведение тел.

Результат: цилиндр тонет, шарик всплывает, пузырек плавает, погрузившись в воду полностью.

Проблемная ситуация: Почему? – (Соотношение сил, действующих на тело).

– На все тела в воде действуют две силы: сила тяжести, направленная вниз и выталкивающая сила (сила Архимеда), направленная вверх.

– Из правила сложения сил, действующих на тело вдоль одной прямой, следует: тонет, если F т ˃ F А; всплывает, если F т ˂ F А; плавает, если F т = F А.

III. Практическая работа по проверке полученных выводов

Проделаем эксперимент и проверим соотношение между силой тяжести и выталкивающей силой. (За основу берется лабораторная работа "Выяснение условий плавания тел в жидкости" – стр. 211 учебника).


Задание 1.

  1. Наполните капсулу на 1/4 часть песком, определите на весах его массу в граммах. Переведите значение массы в кг и запишите в таблицу.
  2. Опустите капсулу в воду и определите объём вытесненной воды в см3. Для этого отметьте уровни воды в мензурке до и после погружения капсулы в воду. Запишите значение объёма в м3 в таблицу.

Р = F тяж = mg и F А = ρ ж gV т

Задание 2.

  1. Наполните капсулу полностью песком, определите на весах его массу в граммах. Переведите значение массы в кг и запишите в таблицу.
  2. Опустите капсулу в воду и определите объём вытесненной воды в см 3 . Для этого отметьте уровни воды в мензурке до и после погружения капсулы в воду. Запишите значение объёма в м 3 в таблицу.
  3. Рассчитайте силу тяжести и архимедову силу по формулам:

Р = F тяж = mg и F А = ρ ж gV

Сравните архимедову силу с силой тяжести. Результаты вычислений занесите в таблицу и отметьте: капсула тонет или всплывает.

Масса тела,
m , кг

Сила тяжести,
F тяж, Н

Объем вытес-ненной воды,
V
, м 3

Архимедова сила,
F
А, Н

Сравнение F тяж и F А

Поведение капсулы в воде

всплывает

Задание 3.

  1. Определите при каком соотношении силы тяжести и архимедовой силы капсула будет плавать в любом месте жидкости, полностью погрузившись в неё? Какое значение при этом будет иметь объём вытесненной капсулой воды?
  2. Определите массу для плавающего тела (без вычисления).
  3. Заполните капсулу песком до необходимой массы, затем опустите в воду и убедитесь на опыте в правильности ваших рассуждений.
  4. Сделайте вывод об условии плавания тела в жидкости.

Опыт 2

Проверим условия плавания в зависимости от плотности вещества, из которого сделаны тела, и плотности жидкости. Для этого у нас есть ванночка c водой, пластина алюминиевой фольги, пассатижи.

  1. Сгибая уголки, сделаем из пластины коробочку. Опустим на поверхность воды. Наблюдаем плавание коробочки на поверхности воды.
  2. Вытащим коробочку из воды, вернём пластине плоский вид. сложим пластину вдвое, вчетверо и т.д. Пассатижами сожмём фольгу и опустим в воду.


Результат: пластина в виде коробочки плавает, в сжатом виде – тонет.

Проблемная ситуация: Почему? – (Соотношение плотностей тела и воды).

  • плотность коробочки из алюминиевой фольги меньше плотности воды, а плотность сжатого комочка фольги больше плотности воды.
  • Условия плавания тел: тонет, если ρ т ˃ ρ воды; всплывает, если ρ т ˂ ρ воды; плавает, если ρ т = ρ воды. (ρ алюм = 2700 кг/м 3 ; ρ воды = 1000 кг/м 3).

IV. Рефлексия

Опыт 3. Посмотрите и объясните действие прибора, изготовленного учеником по заданию к §52 (с.55 учебника). "Картезианский водолаз". Вместо прозрачного пузырька ученик использовал обычную пипетку.


Прибор позволяет продемонстрировать законы плавания тел.

V. Домашнее задание

§52; упр 27(3,5,6).

Самоанализ урока

Тема урока физики в 7 классе "Условия плавания тел". В классе 20 учеников. Из них основная часть имеет хорошую математическую подготовку. Ребята любознательные, активные. Хорошо работают в коллективе. Участвуют в подготовке оборудования к уроку.

Цель урока: заинтересовать учащихся, приблизить к самостоятельному решению проблемных ситуаций. В ходе урока ребята учатся самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения проблемы.

Тип урока – урок повторения предметных знаний – позволяет проверить полученные на предыдущем уроке знания и подготовиться к решению задач по теме на следующем уроке.

Выбранные этапы урока логически между собой связаны, происходит плавный переход от одного к другому. В течение урока учитель только направляет, корректирует действия учащихся, которые практически весь урок работают самостоятельно. Для экономии времени при выполнении практической части, учащиеся на дополнительных занятиях приготовили по две капсулы с песком, заполненные полностью и частично (задания 1 и 2), третья оставалась пустой. На уроке ребята научились делать выводы из эксперимента, активно обсуждали решение проблемных ситуаций. На завершающем этапе было ещё раз акцентировано внимание ребят на теме урока. Учителем прокомментировано домашнее задание и выставлены оценки за устные ответы, после урока проверены тетради по лабораторным работам.

Считаю, что цели урока достигнуты: ребята научились анализировать, выделять (главное, существенное), сравнивать, классифицировать, обобщать факты и понятия, находили решение проблемных ситуаций. На уроке была создана атмосфера коллективного поиска, эмоциональной приподнятости, радости познания, радости преодоления трудностей.

Условия плавания тел

Цель урока: выяснение условия плавания тел в зависимости от плотности вещества и жидкости.

Обучающие:

    знакомство учащимися с понятиями: условие плавания тел

    формирование целостного восприятие научной картины мира

Развивающие:

    развитие операционного стиля мышления учащихся;

    развитие синтетического мышления учащихся;

    развитие умения и навыка проведения эксперимента;

    продолжение работы над развитием интеллектуальных умений и навыков: выделение главного, анализ, умение делать выводы, конкретизация;

Воспитывающие:

    формирование интереса учащихся к изучению физики;

    воспитание аккуратности, умения и навыка рационального использования своего времени, планирования своей деятельности.

Оборудование к уроку:

Пробирка с пробкой, шарик из картофеля, пластилин, вода, насыщенный раствор соли, сосуд, динамометр, весы с разновесами

1. Вступление. Актуализация знаний.

Сегодня урок начнет ученик вашего класса. Итак внимательно слушаем

У синего кита язык весит 3 т, печень -1т, сердце - 600-700 кг, крови у него - 10 т, диаметр спинной артерии - 40 см, в желудке - 1-2 т. пищи; пасть кита - комната площадью 24 м2. В ыброшенный на берег, практически мгновенно гибнет .

Интересное растение живет в Тихом океане –это макроцистис. Его длина достигает 57 метров, а масса -100 килограммов. Эту водоросль называют пузырчаткой. Возле каждой пластины листа находится пузырь величиной с крупное яблоко. Оболочка толстая, не проколешь! Надут он туго, туго каким-то газом, который вырабатывает сама водоросль. Это растение очень полезное.

Л ебеди и утки, тяжелые и неуклюжие на берегу, но такие легкие и грациозные в воде.

Г воздь из железа тонет, а корабль, сделанный из железа плавает

2. Сформулируйте тему урока???

Условия плавания тел

Задачи урока:

    Научиться выводить формулы условия плавания тел.

    Научиться работать с приборами, наблюдать, анализировать и сравнивать результаты опытов, делать выводы.

    Выяснить условие, при котором тело в жидкости тонет, и условие всплывания тел, полностью погруженных в жидкость.

3.Опыт:

– У меня в руках несколько брусочков и шариков одинакового объема. Одинаковыми ли будут выталкивающие силы этих тел при погружении их в воду? (одинаковыми)

– Попробуем опустить их в воду. Что мы видим? Одни тела утонули, другие плавают. Почему? Что еще мы не учли, когда говорили о погружении тел в жидкость?

Вывод из опыта:

Значит, тонет тело или нет, зависит не только от силы Архимеда, но и от силы тяжести.

4. Повторим материал прошлого урока

Какую силу называют архимедовой?

От каких величин она зависит?

По какой формуле её вычисляют?

Как еще можно определить выталкивающую силу

В каких единицах её измеряют?

Как направлена архимедова сила?

Как определить силу тяжести

Как направлена сила тяжести?

Что называется равнодействующей силой?

Как находится равнодействующая двух сил, направленных по одной прямой в одну сторону? В разные стороны?

Как будет вести себя тело под действием двух равных, но противоположно направленных сил?

5. Изложение нового материала. Первичное закрепление.

Разберем различные ситуации

(Fт >FА) (Fт =FА) (Fт < FА)

Выдвинем предположения (гипотезу)

если сила тяжести больше силы Архимеда (Fт >FА) --Тело тонет

если сила тяжести равна силе Архимеда (Fт =FА) – Тело плавает,

если сила тяжести меньше силы Архимеда (Fт < FА) ---Тело всплывает

Предположение необходимо проверить на опыте.

Перед вами различные тела и приборы.

Какими материалами необходимо воспользоваться чтобы доказать наши предположения

(динамометр, жидкость, тело)

Какие произвести измерения.(определить силу архимеда и силу тяжести и сравнить их между собой) или расчитать по формулам.

Заполняют таблицу

А= ρ ж V g =

F т = mg =

вывод(соотношение сил тяжести и архимедовой силы определяет способности тела: плавать, тонуть или всплывать)

Соотношение сил тяжести и архимедовой силы определяет способности тела: плавать, тонуть или всплывать.

Демонстрации: 1. Тело из пробирки плавает в воде. 2. Шарик из картофеля тонет в воде. 3. Тот же картофельный шарик всплывает в соленой воде. 4. Шарик из пластилина тонет в воде 5. Лодочка из пластилина плавает в воде

Для того чтобы тело плавало, необходимо, чтобы действующая на него сила тяжести уравновешивалась архимедовой (выталкивающей) силой.

F т = F a (1)

Архимедова сила: F a = ρ ж V ж g (2)

Сила тяжести: F т = mg = ρVg (3)

Подставим выражения (2) и (3) в равенство (1): ρVg = ρ ж V ж g

Разделив обе части этого равенства на g, получим условие плавания тел в новой форме:

ρV = ρ ж V ж

Чтобы тело плавало, частично выступая над поверхностью жидкости, плотность тела должна быть меньше плотности жидкости. При плотности тела, больше плотности жидкости, тело тонет, т.к. сила тяжести превышает архимедову силу.

Разбор упражнения:

– Какие вещества (лед, стеарин, воск, резина, кирпич) будут всплывать в воде, молоке, ртути?

– Пользуясь таблицей, определите, какие металлы тонут в ртути? (осмий, иридий, платина, золото)

– Какие вещества будут всплывать в керосине? (пробка, сосна, дуб)

4. Применение условий плавания тел

А) Плавание кораблей

– А сейчас мы должны объяснить, почему стальной гвоздь тонет, а корабль из стали плавает?

– Возьмем пластилин. Если его опустить в воду, то он тонет. Как сделать так, чтобы он не тонул?

Б) Плавание рыб и китов

    Как рыбы и киты могут менять глубину погружения? (рыбы за счет изменения объема плавательного пузыря, киты за счет изменения объема легких, значит за счет силы Архимеда)

    Плотность живых организмов, населяющих водную среду, очень мало отличается от плотности воды, поэтому их вес почти полностью уравновешивается архимедовой силой. Рыба может менять объём своего тела, сжимая плавательный пузырь усилиями грудных и брюшных мышц, меняя тем самым среднюю плотность своего тела, благодаря чему она может регулировать глубину своего погружения.

Плавательный пузырь рыбы легко меняет свой объём. Когда рыба с помощью мышц опускается на большую глубину и давление воды на неё увеличивается, пузырь сжимается, объём тела рыбы уменьшается и она плавает в глубине. При подъёме плавательный пузырь и объём рыбы увеличивается и она всплывает. Так рыба регулирует глубину своего погружения. Плавательный пузырь рыбы Это интересно

Киты регулируют глубину погружения за счёт увеличения и уменьшения объёма лёгких. Это интересно

Средняя плотность живых организмов, населяющих водную среду, мало отличается от плотности воды, поэтому их вес почти полностью уравновешивается архимедовой силой. Благодаря этому водные животные не нуждаются в прочных и массивных скелетах. По этой же причине эластичны стволы водных растений.

У птиц есть толстый, не пропускающий воды, слой перьев и пуха, в котором содержится значительное количество воздуха, благодаря чему средняя плотность их тела оказывается очень малой, поэтому утки мало погружаются в воду при плавании.

В) Плавание подводных лодок

– За счет чего подводные лодки могут подниматься и опускаться на различные глубины? (за счет изменения своей массы, а значит силы тяжести)

Г) Плавание человека в пресной воде и в соленой воде

    Средняя плотность тела человека равна 1030 кг/м. Будет ли плавать человек или тонуть в реке и в соленом озере?

Плавание тел

203. Лежащий на воде неподвижно на спине пловец делает глубокие вдох и выдох. Как изменяется при этом положение тела пловца по отношению к поверхности воды? Почему?

204. Одинаковы ли выталкивающие силы, действующие на один и тот же деревянный брусок, плавающий сначала в воде, а потом в керосине?

205. Почему тарелка, положенная на поверхность воды плашмя, плавает, а опущенная в воду ребром тонет?

206. Может ли спасательный круг удержать любое число ухватившихся за него людей?

207. На груди и на спине водолаза помещают тяжелые свинцовые пластинки, а к башмакам приделывают свинцовые подошвы. Зачем это делают?

208. В сосуд с водой опущен кусок дерева. Изменится ли от этого давление на дно сосуда, если вода из сосуда не выливается?

209. Стакан до краев наполнен водой. В него помещают кусок дерева так, что он свободно плавает. Изменится ли вес стакана, если вода по-прежнему наполняет его до краев?

Ответы:203. При вдохе пловец всплывает, при выдохе погружается глубже в воду, так как при дыхании меняется объем грудной клетки и соответственно меняется архимедова сила.

(При вдохе пловец всплывает, при выдохе погружается глубже в воду, так как при дыхании меняется объем грудной клетки, а масса тела остается практически постоянной. Поэтому общий объем тела при вдохе возрастает, при выдохе убывает, а объем части тела, погруженной в воду, не меняется.)

204. Одинаковы. Брусок плавает в обеих жидкостях, значит, выталкивающая сила в каждой из них равна действующей на него силе тяжести.

206. Нет, так как подъемная сила (разность между максимальной архимедовой силой и силой тяжести) круга имеет ограниченную величину.

207. Чтобы увеличить силу тяжести и сделать ее больше архимедовой силы, иначе водолаз не погрузится на необходимую глубину.

208. Давление увеличится, так как повысится уровень воды в сосуде.

209. Не изменится, так как вес куска дерева равен весу вытесненной им (и вылившейся из стакана) воды.

6. Экспериментальное задание.

    Определите массу тела: m=

    Определите F т по формуле и с помощью динамометра, заполните таблицу.

    Определите F А по формуле и с помощью динамометра, заполните таблицу.

    Сформулируйте вывод(соотношение сил тяжести и архимедовой силы определяет способности тела: плавать, тонуть или всплывать)

Заполняют таблицу

А= ρ ж V g =

F т = mg =

вывод(на основе эксперимента)

вывод(по факту)

F т =

7. Задание на дом:

8.Заключение: с ейчас время нашего урока подходит к концу. И пусть мы не решили всех проблем, но ведь и наше путешествие по дорогам физики не заканчивается!

Плавание тел — состояние равновесия твердого тела, частично или полностью погруженного в жидкость (или газ).

Основная задача теории плавания тел — определение равновесия тела, погруженного в жид-кость, выяснение условий устойчивости равновесия. На простейшие условия плавания тел указы-вает закон Архимеда . Рассмотрим эти условия.

Как известно, на все тела, погруженные в жидкость, действует сила Архимеда F A (выталки-вающая сила), направленная вертикально вверх, однако всплывают далеко не все. Чтобы понять, почему одни тела всплывают, а другие тонут, необходимо учесть еще одну силу, действующую на все тела, — силу тяжести которая направлена вертикально вниз, т. е. противоположно F A . Если тело оставить внутри жидкости в состоянии покоя, то оно начнет двигаться в сторону, в ко-торую направлена большая из сил. При этом возможны следующие случаи:

  1. если архимедова сила меньше силы тяжести (F A < F т ), то тело опустится на дно, т. е. утонет (рис. а );
  2. если архимедова сила больше силы тяжести (F A > F т ), то тело всплывет (рис. б );

Если эта сила окажется больше силы тяжести, действующей на тело, то тело взлетит. На этом основано воздухоплавание.

Летательные аппараты, применяемые в воздухоплавании, называют аэростатами (от греч. aer — воздух, status — стоящий). Неуправляемые аэростаты свободного полета с оболочкой, име-ющей форму шара, называют воздушными шарами . Для исследования верхних слоев атмосферы (стратосферы) еще не так давно применялись огромные воздушные шары — стратостаты . Уп-равляемые аэростаты (имеющие двигатель и воздушные винты) называют дирижаблями .

Воздушный шар не только сам поднимается вверх, но может поднять и некоторый груз: каби-ну, людей, приборы. Для того, чтобы определить, какой груз способен поднять воздушный тар, следует знать его подъемную силу. Подъемная сила воздушного шара равна разности между ар-химедовой силой и действующей на шар силой тяжести:

F = F A - F т.

Чем меньше плотность газа, наполняющего воздушный шар данного объема, тем меньше дейс-твующая на него сила тяжести и тем больше возникающая подъемная сила. Воздушные шары можно наполнять гелием, водородом или нагретым воздухом. Хотя у водорода меньше плотность, чем у гелия, все же чаще в целях безопасности применяют гелий (водород — горючий газ).

Гораздо проще осуществить подъем и спуск шара, наполненного горячим воздухом. Для этого под отверстием, находящимся в нижней части шара, располагают горелку. Она позволяет регули-ровать температуру воздуха, а значит, и его плотность и подъемную силу.

Можно подобрать такую температуру шара , при которой вес шара и кабины будет равен вы-талкивающей силе. Тогда шар повиснет в воздухе, и с него будет легко проводить наблюдения.

На тело, погруженное в жидкость, кроме силы тяжести, действует выталкивающая сила - сила Архимеда. Жидкость давит на все грани тела, но давление это неодинаков. Ведь нижняя грань тела погружена в жидкость больше, чем верхняя, а давление с глубиной возрастает. То есть сила, действующая на нижнюю грань тела, будет больше, чем сила, действующая на верхнюю грань. Поэтому возникает сила, которая пытается вытолкнуть тело из жидкости.

Значение архимедовой силы зависит от плотности жидкости и объема той части тела, которая находится непосредственно в жидкости. Сила Архимеда действует не только в жидкостях, но и в газах.

Закон Архимеда : на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа в объеме тела. Для того чтобы рассчитать силу Архимеда, необходимо перемножить плотность жидкости, объем части тела, погруженное в жидкость, и постоянную величину g.

На тело, которое находится внутри жидкости, действуют две силы: сила тяжести и сила Архимеда. Под действием этих сил тело может двигаться. Существует три условия плавания тел:

Если сила тяжести больше архимедовой силы, тело будет тонуть, опускаться на дно.

Если сила тяжести равна силе Архимеда, то тело может находиться в равновесии в любой точке жидкости, тело плавает внутри жидкости.

Если сила тяжести меньше архимедовой силы, тело будет всплывать, подниматься вверх.

Плавание тел на поверхности жидкости

В надводном положении на плавающее тело по оси OZ действуют две силы (рис.1.1).Это сила тяжести тела G и выталкивающая архимедова сила P z .

плавании, т.е. в погруженном состоянии . К основным понятиям теории плавания относятся следующие:

- плоскость плавания (I-I) - пересекающая тело плоскость свободной поверхности жидкости;

- ватерлиния – линия пересечения поверхности тела и плоскости плавания;

- осадка (y) – глубина погружения низшей точки тела. Наибольшая допустимая осадка судна отмечается на нём красной ватерлинией;

- водоизмещение – вес воды, вытесненный судном. Водоизмещение судна при полной нагрузке является его основной технической характеристикой;

Центр водоизмещения (точ. D, рис. 1.1) – центр тяжести водоизмещения, через который проходит линия действия выталкивающей архимедовой силы;

Ось плавания (О О ") – линия проходящая через центр тяжести С и центр водоизмещения D при равновесии тела.

Для сохранения равновесия ось плавления должна быть вертикальна. Если на плавающее судно в поперечном направлении действует внешняя сила, например сила давления ветра, то судно накренится, ось плавания повернётся относительно точки С и возникнет крутящий момент М к, вращающий судно относительно продольной оси против часовой стрелки (рис.1.2)

Остойчивость плавающего тела зависит от взаимного положения точек С и D. Если центр тяжести С находится ниже центра водоизмещения D, то при надводном плавании тело всегда остойчиво, так как возникающий при крене крутящий момент М к всегда направлен в сторону противоположную крену.

Если точка С находится выше точки D (рис.1.3), то плавающее тело может быть остойчивым и неостойчивым. Рассмотрим эти случаи подробнее.

При крене центр водоизмещения D смещается по горизонтали в сторону крена, так как один борт судна вытесняет больший объём воды, чем другой.

Тогда линия действия выталкивающей архимедовой силы P z пройдёт через новый центр водоизмещения D" и пересечётся с осью плавания ОО" в точке M, называемой метацентром. Для формулирования условия остойчивости обозначаем отрезок

M D 1 = b ,аСD 1 =∆ , где b - метацентрический радиус ; ∆- эксцентриситет .

Условие остойчивости: тело остойчиво, если его метацентрический радиус больше эксцентриситета, т.е. b > ∆.

Графическая интерпретация условия остойчивости представлена на рис. 1.3, из которого видно, что в случае а) b > ∆ и возникший крутящий момент направлен в сторону противоположную крену, а в случае б) имеем: b < ∆ и момент М к вращает тело в сторону крена, т.е. тело не остойчиво.

Водоизмещение корабля (судна) - количество воды, вытесненной подводной частью корпуса корабля (судна). Вес этого количества жидкости равен весу всего корабля, независимо от его размера, материала и формы.

Различают объёмное и массовое стандартное , нормальное , полное , наибольшее , порожнее водоизмещение.

Объёмное водоизмещение Ватерли́ния (нидерл. waterlinie ) - линия соприкосновения спокойной поверхности воды с корпусом плавающего судна. Также - в теории корабля элемент теоретического чертежа: сечение корпуса горизонтальной плоскостью.

Массовое водоизмещение

Стандартное водоизмещение

Нормальное водоизмещение

Полное водоизмещение

Наибольшее водоизмещение

Водоизмещение порожнем

Подводное водоизмещение

Надводное водоизмещение

Остойчивость плавающих тел

Остойчивостью плавающих тел называется их способность возвращаться в исходное положение после того, как они были выведены из этого положения вследствие воздействия каких-либо внешних сил.

Для придания плавающему телу остойчивости необходимо, чтобы при отклонении его из положения равновесия создавалась пара сил, которая и возвратит тело в первоначальное положение. Такая пара сил может создаваться только силами G и P п. Возможны три различных варианта взаимного расположения этих сил (рис.5.3).

Рис. 5.3. Остойчивость полупогруженных тел при взаимном расположении центра тяжести и центра водоизмещения а и б – остойчивое равновесие

Центр масс расположен ниже центра водоизмещения .При крене центр водоизмещения перемещается как за счет изменения положения тела, так и из-за изменения формы вытесненного объема. При этом возникает пара сил, стремящихся вернуть тело в первоначальное положение. Следовательно, тело имеет положительную остойчивость.

Центр масс совпадает с центром водоизмещения – тело будет иметь также положительную остойчивость вследствие смещения центра водоизмещения за счет изменения формы вытесненного объема.

Центр масс находится выше центра водоизмещения .Здесь имеются два основных варианта (рис. 5.4):

1) точка пересечения подъемной силы с осью плавания M (метацентр) лежит ниже центра масс – равновесие будет неостойчивым (рис. 5.4,а );

2) метацентр лежит выше центра масс – равновесие будет остойчивым (рис. 5.4,б ). Расстояние от метацентра до центра масс называетсяметацентрической высотой . Метацентр – точка пересечения подъемной силы с осью плавания. Если точка М лежит выше точки С , то метацентрическая высота считается положительной, если лежит ниже точки С – то она считается отрицательной.

Таким образом, можно сделать следующие выводы:

остойчивость тела в полупогруженном состоянии зависит от относительного расположения точек М и С (от метацентрической высоты);

тело будет остойчивым, если метацентрическая высота будет положительной, т.е. метацентр расположен выше центра тяжести. Практически все военные плавающие машины строятся с метацентрической высотой 0,3-1,5м.

Рис. 5.4. Остойчивость полупогруженных тел при взаимном расположении центра тяжести и метацентра:

а – неостойчивое равновесие; б – остойчивое равновесие

Водоизмещение корабля (судна) - количество воды, вытесненной подводной частью корпуса корабля (судна). Масса этого количества жидкости равна массе всего корабля, независимо от его размера, материала и формы.

Различают объёмное и массовое водоизмещение. По состоянию нагрузки корабля различают стандартное , нормальное , полное , наибольшее , порожнее водоизмещение.

Для подводных лодок различают подводное водоизмещение и надводное водоизмещение.

Объёмное водоизмещение

водоизмещение, равное объёму подводной части корабля (судна) до ватерлинии.

Массовое водоизмещение

водоизмещение, равное массе корабля (судна).

Стандартное водоизмещение

водоизмещение полностью укомплектованного корабля (судна) с экипажем, но без запасов топлива, смазочных материалов и питьевой воды в цистернах.

Нормальное водоизмещение

водоизмещение, равное стандартному водоизмещению плюс половинный запас топлива, смазочных материалов и питьевой воды в цистернах.

Полное водоизмещение

водоизмещение, равное стандартному водоизмещению плюс полные запасы топлива, смазочных материалов, питьевой воды в цистернах, груза.

Наибольшее водоизмещение

водоизмещение, равное стандартному водоизмещению плюс максимальные запасы топлива, смазочных материалов, питьевой воды в цистернах, грузов.

Водоизмещение порожнем)

водоизмещение порожнего корабля (судна), то есть корабля (судна) без экипажа, топлива, запасов и т. д.

Подводное водоизмещение

водоизмещение подводной лодки (батискафа) и иных подводных судов в подводном положении. Превышает надводное водоизмещение на массу воды, принимаемой при погружении в цистерны главного балласта.

Надводное водоизмещение

водоизмещение подводной лодки (батискафа) и иных подводных судов в положении на поверхности воды до погружения либо после всплытия.

Пермякова Юлия

Тема моего проекта «Плавание тел».

Цель работы: изучение закона Архимеда, выяснение условий и особенностей плавания тел, проверка их на опытах.

Скачать:

Предварительный просмотр:

МОУ «ООШ с. Дороговиновка Пугачевского района Саратовской облкасти»

ПРОЕКТ

по физике

на тему «Плавание тел»

Учащегося 7 класса

МОУ ООШ с. Дороговиновка

Пермяковой Юлии Учитель: Коннова И.В.

С. Дороговиновка

2014 год

I. Введение

Тема моего проекта «Плавание тел».

Цель работы : изучение закона Архимеда, выяснение условий и особенностей плавания тел, проверка их на опытах.

Задачи:

  1. Подобрать и изучить литературу по теме.
  2. Рассказать об истории открытия закона Архимеда.
  3. Доказать существование архимедовой силы.
  4. Проверить условия плавания тел на опытах.

II. ОСНОВНАЯ ЧАСТЬ

1. Теоретическая часть

1.1. Об Архимеде

Архимед родился в греческом городе Сиракузы в 287 году до н. э., где и прожил почти всю свою жизнь, и там же занимался научной деятельностью. Учился сначала у своего отца, астронома и математика Фидия, потом в Александрии, где правители Египта собрали лучших греческих ученых и мыслителей, а также основали знаменитую, самую большую в мире библиотеку. Здесь, в Александрии, Архимед познакомился с учениками Эвклида, с которыми всю жизнь поддерживал оживленную переписку. Здесь же он усиленно изучал труды Демокрита, Евдокса и других ученых.

После учебы в Александрии Архимед вновь вернулся в Сиракузы и унаследовал должность своего отца, придворного астронома.

В теоретическом отношении труд этого великого ученого был ослепляюще многогранным. Основные работы Архимеда касались различных практических приложений математики (геометрии), физики, гидростатики и механики. Он был также изобретательным инженером, который использовал свой талант для решения ряда практических проблем.

До нас дошло тринадцать трактатов Архимеда. В самом знаменитом из них - "О шаре и цилиндре" (в двух книгах) Архимед устанавливает, что площадь поверхности шара в 4 раза больше площади наибольшего его сечения. Работы Архимеда состоят из расчетов площадей фигур, ограниченных кривыми, и объемов тел, ограниченных произвольными плоскостями - поэтому Архимед может по справедливости считаться отцом интегрального исчисления, возникшего на два тысячелетия позже.

Говорят, будто важнейшим своим открытием Архимед считал доказательство, что объем шара и описанного вокруг него цилиндра относятся между собой как 2:3. Архимед просил своих друзей поместить это доказательство на его могильной плите.

Архимед пытался также решить проблему квадратуры круга и достиг в этом выдающихся результатов, объединив их в труд «Об измерении круга»:

1. Площадь круга равна площади прямоугольного треугольника с катетами, равными длине и радиусу окружности (πr 2 ).

2. Площадь круга так относится к площади описанного вокруг него квадрата, как 11:14.

3. Отношение длины окружности к диаметру больше и меньше .

Архимед впервые вычислил число «пи» - отношение длины окружности к диаметру - и доказал, что оно одинаково для любого круга.

Архимед нашел также сумму бесконечной геометрической прогрессии со знаменателем . В математике это был первый пример бесконечного ряда.

При исследовании одной задачи, сводящейся к кубическому уравнению, Архимед выяснил роль характеристики, которая позже получила название дискриминанта.

Архимеду принадлежит формула для определения площади треугольника через три его стороны (неправильно именуемая формулой Герона).

Большую роль в развитии математики сыграло его сочинение «Псаммит» - «О числе песчинок», в котором он показывает, как с помощью существовавшей системы счисления можно выражать сколь угодно большие числа. В качестве повода для своих рассуждений он использует задачу о подсчете количества песчинок внутри видимой Вселенной. Тем самым было опровергнуто существовавшее тогда мнение о наличии таинственных «самых больших чисел ». Мы до сих пор пользуемся придуманной Архимедом системой наименования целых чисел.

Перечисленные научные находки - это только небольшая часть творчества Архимеда. Его усердно переводили и комментировали арабы, а потом западноевропейские ученые.

В физике Архимед ввел понятие центра тяжести, установил научные принципы статики и гидростатики, дал образцы применения математических методов в физических исследованиях. Основные положения статики сформулированы в сочинении "О равновесии плоских фигур". Архимед рассматривает сложение параллельных сил, определяет понятие центра тяжести для различных фигур, дает вывод закона рычага. Знаменитый закон гидростатики, вошедший в науку с его именем (закон Архимеда), сформулирован в трактате "О плавающих телах".

Ему приписывают известное выражение: „дайте мне точку опоры, и я сдвину землю". По-видимому, оно было высказано в связи со спуском корабля «Сиракосия» на воду. Рабочие были не в силах сдвинуть с места этот корабль. Им помог Архимед, создавший систему блоков (полиспаст), при помощи которой один человек, сам царь, совершил эту работу.

1.2. Закон Архимеда

По преданию, царь Гиерон поручил Архимеду проверить, из чистого ли золота сделана его корона или же ювелир присвоил часть золота, сплавив его с серебром. Размышляя над этой задачей, Архимед как-то зашел в баню и там, погрузившись в ванну, заметил, что количество воды, переливающейся через край, равно количеству воды, вытесненной его телом. Это наблюдение подсказало Архимеду решение задачи о короне, и он, не медля ни секунды, выскочил из ванны и, как был нагой, бросился домой, крича во весь голос о своем открытии: «Эврика! Эврика!» (греч. «Нашел! Нашел!»)».

Тот факт, что на погруженное в воду тело действует некая сила, всем хорошо известен: тяжелые тела как бы становятся более легкими – например, наше собственное тело при погружении в ванну. Купаясь в речке или в море, можно легко поднимать и передвигать по дну очень тяжелые камни – такие, которые не удается поднять на суше; то же явление наблюдается, когда по каким-либо причинам выброшенным на берегу оказывается кит – вне водной среды животное не может передвигаться – его вес превосходит возможности его мышечной системы. В то же время легкие тела сопротивляются погружению в воду: чтобы утопить мяч размером с небольшой арбуз требуется и сила, и ловкость; погрузить мяч диаметром полметра скорее всего не удастся. Интуитивно ясно, что ответ на вопрос – почему тело плавает (а другое – тонет), тесно связан с действием жидкости на погруженное в нее тело; нельзя удовлетвориться ответом, что легкие тела плавают, а тяжелые – тонут: стальная пластинка, конечно, утонет в воде, но если из нее сделать коробочку, то она может плавать; при этом ее вес не изменится.

Чтобы понять природу силы, действующей со стороны жидкости на погруженное тело, достаточно рассмотреть простой пример (рис. 1).

Кубик погружен в воду, причем и вода, и кубик неподвижны. Известно, что давление в тяжелой жидкости увеличивается пропорционально глубине – очевидно, что более высокий столбик жидкости более сильно давит на основание. Это давление действует не только вниз, но и в стороны, и вверх с той же интенсивностью – это закон Паскаля.

Если рассмотреть силы, действующие на кубик (рис. 1), то в силу очевидной симметрии силы, действующие на противоположные боковые грани, равны и противоположно направлены – они стараются сжать кубик, но не могут влиять на его равновесие или движение. Остаются силы, действующие на верхнюю и нижнюю грани. Так как давление на глубине больше, чем у поверхности жидкости и , а , то > . Так как силы F 2 и F 1 направлены в противоположные стороны, то их равнодействующая равна разности F 2 – F 1 и направлена в сторону большей силы, то есть вверх. Эта равнодействующая и является архимедовой силой, то есть силой, выталкивающей тело из жидкости.

Закон Архимеда

Закон Архимеда формулируется таким образом: тело, находящееся в жидкости (или газе), теряет в своем весе столько, сколько весит жидкость (или газ) в объеме, вытесненном телом.

1.3. От чего зависит выталкивающая сила

Поведение тела, находящегося в жидкости, зависит от соотношения между модулями силы тяжести F т и архимедовой силы F A , которые действуют на это тело. Возможны следующие три случая:

  1. F т > F A – тело тонет;
  2. F т = F A – тело плавает в жидкости;
  3. F т A – тело всплывает до тех пор, пока не начнет плавать на поверхности жидкости.

Также поведение тела, находящегося в жидкости, зависит от соотношения плотностей тела и жидкости. Следовательно, для определения поведения тела в жидкости, можно сравнить плотности тела и жидкости. В данном случае возможны также три ситуации:

  1. ρ тела > ρ жидкости – тело тонет
  2. ρ тела = ρ жидкости – тело плавает
  3. ρ тела жидкости – тело всплывает.

Приведем примеры.

Плотность железа – 7800 кг/м 3 , плотность воды – 1000 кг/м 3 . Значит, кусок железа будет тонуть в воде. Плотность льда – 900 кг/м 3 , плотность воды – 1000 кг/м 3 , поэтому лед в воде не тонет, а если его бросить в воду, то он начнет всплывать, и будет плавать на поверхности.

2. Практическая часть

2.1. Доказательство существования архимедовой силы

Проведем эксперимент: возьмем цилиндр, подвешенный к динамометру, измерим вес этого цилиндра. Погрузим его в сосуд с водой. Снова взвесим. Мы заметили, что вес цилиндра стал меньше.

Повторим эксперимент с другим телом – связкой ключей. Вес связки, погруженной в воду, опять стал меньше.

Вывод: на всякое тело, погруженное в жидкость, действует выталкивающая сила, называемая архимедовой силой.

2.2. Расчет архимедовой силы

Рассчитаем выталкивающую силу.

Для этого измерим вес тела в воздухе, затем измерим вес этого же тела, но полностью погруженного в воду. Разность этих сил и будет значением архимедовой силы.

F А = P в возд. – P в воде.

Иначе, архимедову силу можно вычислить, зная плотность жидкости и объем тела, погруженного в эту жидкость, по формуле:

F А = g ρ ж V т

2.3. Сравнение силы тяжести и архимедовой силы

Проведем эксперимент.

Возьмем тело – пузырек с некоторым количеством песка. Определим силу тяжести и архимедову силу, действующую на это тело. Сравним их. Мы видим, что, если:

F т > F A – тело тонет;

F т = F A – тело плавает в жидкости;

F т A – тело всплывает

Вывод: поведение тела, находящегося в жидкости, зависит от соотношения между модулями силы тяжести F т и архимедовой силы F A , которые действуют на это тело.

2.4 Сравнение плотностей жидкости и тела

Проведем еще один эксперимент. Возьмем тела, плотности которых меньше или больше плотности воды. Погрузим их в воду. Мы увидим, что «тела, которые тяжелее жидкости, будучи опущены в неё, погружаются всё глубже, пока не достигают дна, и, пребывая в жидкости, теряют в своём весе столько, сколько весит жидкость, взятая в объёме тел», – как говорил Архимед.

Вывод: поведение тела, находящегося в жидкости, зависит от соотношения плотностей тела и жидкости.

2.5 Сравнение архимедовой силы, действующей на тело в разных по плотности жидкостях

Проведем эксперимент: возьмем две жидкости, различных по плотности: шампунь и пресную воду, и кусок пластилина. Определим выталкивающую силу, действующую на пластилин со стороны каждой из жидкостей. Мы увидим, что архимедова сила оказалась разной: у жидкости с большей плотностью (шампуня) она больше, чем у жидкости с меньшей плотностью (пресной воды).



 

 

Это интересно: